Näytä suppeat kuvailutiedot

dc.contributor.authorZawierucha, Krzysztof
dc.contributor.authorVecchi, Matteo
dc.contributor.authorTakeuchi, Nozomu
dc.contributor.authorOno, Masato
dc.contributor.authorCalhim, Sara
dc.date.accessioned2023-06-28T12:06:09Z
dc.date.available2023-06-28T12:06:09Z
dc.date.issued2023
dc.identifier.citationZawierucha, K., Vecchi, M., Takeuchi, N., Ono, M., & Calhim, S. (2023). Negative impact of freeze–thaw cycles on the survival of tardigrades. <i>Ecological Indicators</i>, <i>154</i>, Article 110460. <a href="https://doi.org/10.1016/j.ecolind.2023.110460" target="_blank">https://doi.org/10.1016/j.ecolind.2023.110460</a>
dc.identifier.otherCONVID_183717154
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/88113
dc.description.abstractGlobal warming effects in temperate and polar regions include higher average temperatures and a decrease in snow cover, which together lead to an increase in the number of freeze–thaw cycles (FTC). These changes could affect the fitness of both terrestrial and aquatic species. In this study, we tested how tardigrades, ubiquitous microscopic invertebrates, face FTC. Tardigrades are amongst the most resistant animals to unfavorable conditions, including long and deep freezing periods, and are an emerging model group for invertebrate ecology and evolution. We used 12 populations of tardigrades, representing different families within order Parachela, inhabiting different ecosystems (glaciers, snow, terrestrial, aquatic), found in various substrates (mosses, sediments in lakes, cryoconite on glaciers, and snow), and originating from different latitudes and altitudes. We estimated the number of cycles required to kill 50% of individuals and tested for its association with ecological characteristics of the natural habitat (e.g., number of months with predicted FTC), while accounting for phylogeny. The most resistant tardigrades to FTC were the ones from mountain areas and glaciers. The estimated number of cycles required to kill 50% of individuals was the highest for mountainous species inhabiting rock pools and cryoconite holes on glaciers (30 and 14 FTC, respectively). Tardigrades from lowlands were the most sensitive to changes, with 50% of individuals dying after three FTC, while lacustrine and subtropical tardigrades required only one FTC to reach 50% mortality. Our study shows that the response to recurrent freezing stress is taxon dependent and related to the local environmental conditions. The predicted increase of FTC cycles will negatively impact tardigrade populations. Considering the abundance and various trophic roles of tardigrades, reduction in population sizes or the disappearance of some fragile species could affect the functioning of both aquatic and terrestrial ecosystems. Tardigrades are candidate indicators of how freeze–thaw cycles impact ubiquitous microscopic metazoans with similar physiological capabilities.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofseriesEcological Indicators
dc.rightsCC BY-NC-ND 4.0
dc.subject.otherclimate change
dc.subject.othercold adaptation
dc.subject.othercryobiosis
dc.subject.otherfreezing tolerance
dc.subject.othermortality
dc.subject.otherwater bears
dc.titleNegative impact of freeze–thaw cycles on the survival of tardigrades
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202306284217
dc.contributor.laitosBio- ja ympäristötieteiden laitosfi
dc.contributor.laitosDepartment of Biological and Environmental Scienceen
dc.contributor.oppiaineEkologia ja evoluutiobiologiafi
dc.contributor.oppiaineEcology and Evolutionary Biologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn1470-160X
dc.relation.volume154
dc.type.versionpublishedVersion
dc.rights.copyright© 2023 the Authors
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber335759
dc.relation.grantnumber314219
dc.subject.ysokylmyys
dc.subject.ysokuolleisuus
dc.subject.ysokarhukaiset
dc.subject.ysosopeutuminen
dc.subject.ysoilmastonmuutokset
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p2053
jyx.subject.urihttp://www.yso.fi/onto/yso/p5003
jyx.subject.urihttp://www.yso.fi/onto/yso/p19126
jyx.subject.urihttp://www.yso.fi/onto/yso/p6137
jyx.subject.urihttp://www.yso.fi/onto/yso/p5729
dc.rights.urlhttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.relation.doi10.1016/j.ecolind.2023.110460
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramResearch costs of Academy Research Fellow, AoFen
jyx.fundingprogramResearch costs of Academy Research Fellow, AoFen
jyx.fundingprogramAkatemiatutkijan tutkimuskulut, SAfi
jyx.fundingprogramAkatemiatutkijan tutkimuskulut, SAfi
jyx.fundinginformationThese studies were supported within the DARWIN project financed by the National Agency of Academic Exchange in Poland (Bekker program no. PPN/BEK/2020/1/00321) for KZ, by the JSPS KAKENHI (19H01143 and 22H03731) for NT and MO, and the Academy of Finland Fellowship (#314219 and #335759) for SC and MV.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY-NC-ND 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY-NC-ND 4.0