dc.contributor.author | Gonzàlez-Rosell, Anna | |
dc.contributor.author | Malola, Sami | |
dc.contributor.author | Guha, Rweetuparna | |
dc.contributor.author | Arevalos, Nery R. | |
dc.contributor.author | Matus, María Francisca | |
dc.contributor.author | Goulet, Meghen E. | |
dc.contributor.author | Haapaniemi, Esa | |
dc.contributor.author | Katz, Benjamin B. | |
dc.contributor.author | Vosch, Tom | |
dc.contributor.author | Kondo, Jiro | |
dc.contributor.author | Häkkinen, Hannu | |
dc.contributor.author | Copp, Stacy M. | |
dc.date.accessioned | 2023-05-11T04:57:59Z | |
dc.date.available | 2023-05-11T04:57:59Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Gonzàlez-Rosell, A., Malola, S., Guha, R., Arevalos, N. R., Matus, M. F., Goulet, M. E., Haapaniemi, E., Katz, B. B., Vosch, T., Kondo, J., Häkkinen, H., & Copp, S. M. (2023). Chloride Ligands on DNA-Stabilized Silver Nanoclusters. <i>Journal of the American Chemical Society</i>, <i>145</i>(19), Article 10721-10729. <a href="https://doi.org/10.1021/jacs.3c01366" target="_blank">https://doi.org/10.1021/jacs.3c01366</a> | |
dc.identifier.other | CONVID_183126657 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/86872 | |
dc.description.abstract | DNA-stabilized silver nanoclusters (AgN-DNAs) are known to have one or two DNA oligomer ligands per nanocluster. Here, we present the first evidence that AgN-DNA species can possess additional chloride ligands that lead to increased stability in biologically relevant concentrations of chloride. Mass spectrometry of five chromatographically isolated near-infrared (NIR)-emissive AgN-DNA species with previously reported X-ray crystal structures determines their molecular formulas to be (DNA)2[Ag16Cl2]8+. Chloride ligands can be exchanged for bromides, which red-shift the optical spectra of these emitters. Density functional theory (DFT) calculations of the 6-electron nanocluster show that the two newly identified chloride ligands were previously assigned as low-occupancy silvers by X-ray crystallography. DFT also confirms the stability of chloride in the crystallographic structure, yields qualitative agreement between computed and measured UV–vis absorption spectra, and provides interpretation of the 35Cl-nuclear magnetic resonance spectrum of (DNA)2[Ag16Cl2]8+. A reanalysis of the X-ray crystal structure confirms that the two previously assigned low-occupancy silvers are, in fact, chlorides, yielding (DNA)2[Ag16Cl2]8+. Using the unusual stability of (DNA)2[Ag16Cl2]8+ in biologically relevant saline solutions as a possible indicator of other chloride-containing AgN-DNAs, we identified an additional AgN-DNA with a chloride ligand by high-throughput screening. Inclusion of chlorides on AgN-DNAs presents a promising new route to expand the diversity of AgN-DNA structure–property relationships and to imbue these emitters with favorable stability for biophotonics applications. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | American Chemical Society (ACS) | |
dc.relation.ispartofseries | Journal of the American Chemical Society | |
dc.rights | CC BY-NC-ND 4.0 | |
dc.subject.other | anions | |
dc.subject.other | crystal structure | |
dc.subject.other | genetics | |
dc.subject.other | ligands | |
dc.subject.other | nanoclusters | |
dc.title | Chloride Ligands on DNA-Stabilized Silver Nanoclusters | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-202305112951 | |
dc.contributor.laitos | Fysiikan laitos | fi |
dc.contributor.laitos | Kemian laitos | fi |
dc.contributor.laitos | Department of Physics | en |
dc.contributor.laitos | Department of Chemistry | en |
dc.contributor.oppiaine | Orgaaninen kemia | fi |
dc.contributor.oppiaine | Nanoscience Center | fi |
dc.contributor.oppiaine | Organic Chemistry | en |
dc.contributor.oppiaine | Nanoscience Center | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 0002-7863 | |
dc.relation.numberinseries | 19 | |
dc.relation.volume | 145 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2023 The Authors. Published by American Chemical Society | |
dc.rights.accesslevel | openAccess | fi |
dc.subject.yso | ligandit | |
dc.subject.yso | röntgenkristallografia | |
dc.subject.yso | hopea | |
dc.subject.yso | nanohiukkaset | |
dc.subject.yso | DNA | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p24741 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p29058 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p7409 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p23451 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p7690 | |
dc.rights.url | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.relation.doi | 10.1021/jacs.3c01366 | |
jyx.fundinginformation | This work was supported by NSF Biophotonics CBET2025790. A.G.-R. acknowledges a Balsells Graduate Fellowship. The computational work was supported by the Academy of Finland and by the Excellence Funding from the JYU rector. | |
dc.type.okm | A1 | |