University of Jyväskylä | JYX Digital Repository

  • English  | Give feedback |
    • suomi
    • English
 
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  • JYX
  • Julkaisusarjat
  • JYU Dissertations
  • View Item
JYX > Julkaisusarjat > JYU Dissertations > View Item

Automatic sleep stage classification based on single-channel EEG

Thumbnail
View/Open
5.7 Mb

Downloads:  
Show download detailsHide download details  
Published in
JYU Dissertations
Authors
ZHOU, DONGDONG
Date
2023
Copyright
© The Author & University of Jyväskylä

 
Uniongelmat lisääntyvät ja niillä on kielteinen vaikutus maailman väestön terveyteen, kuten COVID-19-pandemia osoitti. Uniongelmien analysoimisessa tärkein vaihe on arvioida oikein unen laatua ja diagnosoida unihäiriöt luokittelemalla unen vaiheet (kutsutaan myös unipisteytykseksi). Yleisin unen pisteytyksen työkalu on polysomnografiatallennus. Tämä toimenpide on kuitenkin aikaa vievä ja on tehtävä asiantuntevalla klinikalla. Tästä syystä tarvitaan automaattisia univaiheen luokittelumenetelmiä, jotka täyttävät unitutkimuksen kasvavat vaatimukset. Tässä väitöskirjassa keskitymme kehittämään syväoppimiseen perustuvia menetelmiä ja etsimään ratkaisuja luokkaepätasapaino-ongelmaan ja mallin tulkittavuuteen automaattisessa unen pisteytyksessä käyttäen yksikanavaista EEG:tä. Artikkelissa I esittelemme tehokkaan yksiulotteisen konvoluutiohermoverkkopohjaisen mallin SingleChannelNet (SCNet). Se perustuu automaattiseen unen pisteytykseen yksikanavaisella EEG:llä. Artikkelissa II pyrimme parantamaan mallin optimointinopeutta spektrogrammin syötteen avulla. Ehdottamallamme mallilla LightSleepNet (LSNet) on lupaava suorituskyky ja se vaatii merkittävästi vähemmän malliparametreja. Luokkaepätasapaino-ongelman lieventämiseksi ehdotamme artikkeleissa III ja IV erilaisia menetelmiä tietojoukkonäytteiden tasapainottamiseksi Gaussin valkoisen kohinan lisäyksen, generatiivisen adversariaalisen verkon ja verkkoyhteyden avulla käyttäen luokkapainotuksen uudelleensuunnittelumenetelmiä. Artikkelissa V tarjoamme tulkittavan relevanssin kerroksittaiseen etenemiseen perustuvan univaiheen luokittelukaavion, joka voi visuaalisesti osoittaa kunkin univaiheen tiettyjen EEG-kuvioiden vaikutuksen lopulliseen mallin ennusteeseen. Johtopäätöksenä tässä opinnäytetyössä ehdotetaan automaattiseen univaiheen luokitteluun kahta menetelmää, jotka voisivat saavuttaa huomattavan suorituskyvyn julkisissa polysomnografia-aineistoissa. Lisäksi analysoimme ja esittelemme systemaattisesti tehokkaita ratkaisuja luokkaepätasapaino-ongelmaan ja mallin tulkittavuuteen automaattisessa unipisteytyksessä. Odotamme tämän opinnäytetyön edistävän automaattisten unihalvausmenetelmien käytännön soveltamista tulevaisuudessa. Avainsanat: Univaiheen luokittelu, yksikanavainen EEG, syvä hermoverkko, luokkaepätasapaino-ongelma, mallin tulkittavuus ...
 
Sleep issues are on the rise and have a negative impact on global population health, particularly during the COVID-19 outbreak. The most crucial stage is to correctly assess sleep quality and diagnose sleep disorders by categorizing the stages of sleep (also called sleep scoring). The most common tool for sleep scoring is the polysomnography (PSG) recording. However, this manual procedure is time-consuming and heavily reliant on clinic expertise. As a result, it is essential to develop automatic sleep stage classification methods to fulfill the growing unmet demands for sleep research. In this thesis, we focus on developing deep learning-based (DL-b) methods and solutions for the class imbalance problem (CIP) and model interpretability in automatic sleep scoring using single-channel EEG. In Article I, we present an efficient one-dimensional Conventional Neural Network (1D-CNN) based model, namely SingleChannelNet (SCNet), for automatic sleep scoring with raw single-channel EEG. In Article II, we further seek to accelerate the training speed with the spectrogram input. In addition, our proposed LightSleepNet (LSNet) could achieve promising performance while requiring far fewer model parameters. To alleviate the CIP, we propose different balancing methods to balance the dataset samples and network connection with the Gaussian white noise addition (GWN), Generative adversarial network (GAN) and class weight redesign methods in Articles III and IV, respectively. In Article V, we provide an interpretable sleep stage classification scheme based on layer-wise relevance propagation (LRP), which can visually demonstrate the contribution of specific EEG patterns in each sleep stage to the final model prediction. To conclude, this thesis proposes two DL-b methods for automatic sleep stage classification, which could obtain remarkable performance on public PSG datasets. In addition, we systematically analyze and present efficient solutions to the CIP and model interpretability in automatic sleep scoring. Ultimately, we expect this thesis to promote the practical application of DL-b automatic sleep scorning methods in the future. Keywords: Sleep stage classification, single-channel EEG, deep neural network, class imbalance problem, model interpretability ...
 
Publisher
Jyväskylän yliopisto
ISBN
978-951-39-9303-0
Contains publications
  • Artikkeli I: Zhou, D., Wang, J., Hu, G., Zhang, J., Li, F., Yan, R., Kettunen, L., Chang, Z., Xu, Q., & Cong, F. (2022). SingleChannelNet : A model for automatic sleep stage classification with raw single-channel EEG. Biomedical Signal Processing and Control, 75, Article 103592. DOI: 10.1016/j.bspc.2022.103592. JYX: jyx.jyu.fi/handle/123456789/85554
  • Artikkeli II: Zhou, D., Xu, Q., Wang, J., Zhang, J., Hu, G., Kettunen, L., Chang, Z., & Cong, F. (2021). LightSleepNet : A Lightweight Deep Model for Rapid Sleep Stage Classification with Spectrograms. In EMBC 2021 : 43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 43-46). IEEE. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. DOI: 10.1109/embc46164.2021.9629878. JYX: jyx.jyu.fi/handle/123456789/85535
  • Artikkeli III: Xu, Q., Zhou, D., Wang, J., Shen, J., Kettunen, L., & Cong, F. (2022). Convolutional Neural Network Based Sleep Stage Classification with Class Imbalance. In IJCNN 2022 : Proceedings of the 2022 International Joint Conference on Neural Networks. IEEE. Proceedings of International Joint Conference on Neural Networks. DOI: 10.1109/ijcnn55064.2022.9892741. JYX: jyx.jyu.fi/handle/123456789/85542
  • Artikkeli IV: Zhou, D., Xu, Q., Wang, J., Xu, H., Kettunen, L., Chang, Z., & Cong, F. (2022). Alleviating Class Imbalance Problem in Automatic Sleep Stage Classification. IEEE Transactions on Instrumentation and Measurement, 71, Article 4006612. DOI: 10.1109/TIM.2022.3191710. JYX: jyx.jyu.fi/handle/123456789/85541
  • Artikkeli V: Zhou, D., Xu, Q., Zhang, J., Wu, L., Kettunen, L., Chang, Z., Xu, H. and Cong, F. (2023). Interpretable Sleep Stage Classification Based on Layer-wise Relevance Propagation. Submitted to IEEE Transactions on Cognitive and Developmental Systems, under revision.
URI

http://urn.fi/URN:ISBN:978-951-39-9303-0

Metadata
Show full item record
Collections
  • JYU Dissertations [130]

Related items

Showing items with similar title or keywords.

  • SingleChannelNet : A model for automatic sleep stage classification with raw single-channel EEG 

    Zhou, Dongdong; Wang, Jian; Hu, Guoqiang; Zhang, Jiacheng; Li, Fan; Yan, Rui; Kettunen, Lauri; Chang, Zheng; Xu, Qi; Cong, Fengyu (Elsevier, 2022)
    In diagnosing sleep disorders, sleep stage classification is a very essential yet time-consuming process. Various existing state-of-the-art approaches rely on hand-crafted features and multi-modality polysomnography (PSG) ...
  • Automatic subgenre classification of heavy metal music 

    Tsatsishvili, Valeri (2011)
    Automatic genre classification of music has been of interest for researchers over a decade. Many success-ful methods and machine learning algorithms have been developed achieving reasonably good results. This thesis explores ...
  • Automatic identification of architecture and endianness using binary file contents 

    Kairajärvi, Sami (2019)
    This thesis explores how architecture and endianness of executable code can be identified using binary file contents, as falsely identifying the architecture caused about 10% of failures of firmware analysis in a recent ...
  • Automatic image‐based identification and biomass estimation of invertebrates 

    Ärje, Johanna; Melvad, Claus; Jeppesen, Mads Rosenhøj; Madsen, Sigurd Agerskov; Raitoharju, Jenni; Rasmussen, Maria Strandgård; Iosifidis, Alexandros; Tirronen, Ville; Gabbouj, Moncef; Meissner, Kristian; Høye, Toke Thomas (Wiley, 2020)
    Understanding how biological communities respond to environmental changes is a key challenge in ecology and ecosystem management. The apparent decline of insect populations necessitates more biomonitoring but the time-consuming ...
  • Alleviating Class Imbalance Problem in Automatic Sleep Stage Classification 

    Zhou, Dongdong; Xu, Qi; Wang, Jian; Xu, Hongming; Kettunen, Lauri; Chang, Zheng; Cong, Fengyu (Institute of Electrical and Electronics Engineers (IEEE), 2022)
    For real-world automatic sleep-stage classification tasks, various existing deep learning-based models are biased toward the majority with a high proportion. Because of the unique sleep structure, most of the current ...
  • Browse materials
  • Browse materials
  • Articles
  • Conferences and seminars
  • Electronic books
  • Historical maps
  • Journals
  • Tunes and musical notes
  • Photographs
  • Presentations and posters
  • Publication series
  • Research reports
  • Research data
  • Study materials
  • Theses

Browse

All of JYXCollection listBy Issue DateAuthorsSubjectsPublished inDepartmentDiscipline

My Account

Login

Statistics

View Usage Statistics
  • How to publish in JYX?
  • Self-archiving
  • Publish Your Thesis Online
  • Publishing Your Dissertation
  • Publication services

Open Science at the JYU
 
Data Protection Description

Accessibility Statement

Unless otherwise specified, publicly available JYX metadata (excluding abstracts) may be freely reused under the CC0 waiver.
Open Science Centre