Automatic subgenre classification of heavy metal music
Tekijät
Päivämäärä
2011Automatic genre classification of music has been of interest for researchers over a decade. Many success-ful methods and machine learning algorithms have been developed achieving reasonably good results. This thesis explores automatic sub-genre classification problem of one of the most popular meta-genres, heavy metal. To the best of my knowledge this is the first attempt to study the issue. Besides attempting automatic classification, the thesis investigates sub-genre taxonomy of heavy metal music, highlighting the historical origins and the most prominent musical features of its sub-genres. For classification, an algorithm proposed in (Barbedo & Lopes, 2007) was modified and implemented in MATLAB. The obtained results were compared to other commonly used classifiers such as AdaBoost and K-nearest neighbours. For each classifier two sets of features were employed selected using two strategies: Correlation based feature selection and Wrapper selection.
A dataset consisting of 210 tracks representing seven genres was used for testing the classification algorithms. Implemented algorithm classified 37.1% of test samples correctly, which is significantly better performance than random classification (14.3%). However, it was not the best achieved result among the classifiers tested. The best result with correct classification rate of 45.7% was achieved by AdaBoost algorithm.
...
Asiasanat
Metadata
Näytä kaikki kuvailutiedotKokoelmat
- Pro gradu -tutkielmat [29739]
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Towards a holistic interpretation of musical genre classification
Kemp, Chris (Jyväskylän yliopisto, 2004) -
Testing a spectral-based feature set for audio genre classification
Hartmann, Martín Ariel (2011)Automatic musical genre classification is an important information retrieval task since it can be applied for practical purposes such as the organization of data collections in the digital music industry. However, this ... -
Solving classification problems with multicriteria decision aiding approaches
Yevseyeva, Iryna (University of Jyväskylä, 2007)Iryna Yevseyevan väitöskirjan aiheena on päätöksentekijän avustaminen hänen ratkaistessaan vaativia ja monimutkaisia luokittelutehtäviä. Tällaisia tehtäviä esiintyy erityyppisessä diagnostiikassa, esimerkiksi lääketieteen ... -
DeepFake knee osteoarthritis X-rays from generative adversarial neural networks deceive medical experts and offer augmentation potential to automatic classification
Prezja, Fabi; Paloneva, Juha; Pölönen, Ilkka; Niinimäki, Esko; Äyrämö, Sami (Nature Publishing Group, 2022)Recent developments in deep learning have impacted medical science. However, new privacy issues and regulatory frameworks have hindered medical data sharing and collection. Deep learning is a very data-intensive process ... -
Approaches and challenges of automatic vulnerability classification using natural language processing and machine learning techniques
Jormakka, Ossi (2019)Automatisoitu haavoittuvuuksien etsiminen ja haavoittuvuuksien yksityiskohtien ennustaminen voi auttaa asiantuntijoita priorisoimaan ohjelmistovirheitä, joka voi johtaa nopeampaan virheenkorjaukseen. Tässä työssä käytettiin ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.