Näytä suppeat kuvailutiedot

dc.contributor.authorHu, Tao
dc.contributor.authorZhang, Xinran
dc.contributor.authorChang, Zheng
dc.contributor.authorHu, Fengye
dc.contributor.authorHämäläinen, Timo
dc.date.accessioned2023-02-20T10:37:38Z
dc.date.available2023-02-20T10:37:38Z
dc.date.issued2022
dc.identifier.citationHu, T., Zhang, X., Chang, Z., Hu, F., & Hämäläinen, T. (2022). Communication-Efficient Federated Learning in Channel Constrained Internet of Things. In <i>GLOBECOM 2022 IEEE Global Communications Conference</i> (pp. 275-280). IEEE. IEEE Global Communications Conference. <a href="https://doi.org/10.1109/globecom48099.2022.10000898" target="_blank">https://doi.org/10.1109/globecom48099.2022.10000898</a>
dc.identifier.otherCONVID_172631287
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/85533
dc.description.abstractFederated learning (FL) is able to utilize the computing capability and maintain the privacy of the end devices by collecting and aggregating the locally trained learning model parameters while keeping the local personal data. As the most widely-used FL framework,Jederated averaging (FedAvg) suffers an expensive communication cost especially when there are large amounts of devices involving the FL process. Moreover, when considering asynchronous FL, the slowest device becomes the bottleneck for the cask effect and determines the overall latency. In this work, we propose a communication-efficient federated learning framework with partial model aggregation (CE-FedPA) algorithm to utilize compression strategy and weighted device selection, which can significantly reduce the size of uploaded data and decrease the communication time. We perform a series of experiments on the MNIST/CIFAR-10 datasets, in both lID and non-lID data settings. We compare the communication time of different aggregation schemes, in terms of iteration rounds and target accuracy. Simulation results demonstrate that the uploading time of the proposed scheme is up to 4.3 times shorter than other existing ones. Experiments on an end - to-end FL framework also verify the communication efficiency of CE-FedPA in a real-world setting.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherIEEE
dc.relation.ispartofGLOBECOM 2022 IEEE Global Communications Conference
dc.relation.ispartofseriesIEEE Global Communications Conference
dc.rightsIn Copyright
dc.subject.otherperformance evaluation
dc.subject.othertraining
dc.subject.otherdata privacy
dc.subject.othercosts
dc.subject.otherfederated learning
dc.subject.othersimulation
dc.subject.otherdata integrity
dc.titleCommunication-Efficient Federated Learning in Channel Constrained Internet of Things
dc.typeconference paper
dc.identifier.urnURN:NBN:fi:jyu-202302201792
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineTekniikkafi
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineSecure Communications Engineering and Signal Processingfi
dc.contributor.oppiaineEngineeringen
dc.contributor.oppiaineMathematical Information Technologyen
dc.contributor.oppiaineSecure Communications Engineering and Signal Processingen
dc.type.urihttp://purl.org/eprint/type/ConferencePaper
dc.relation.isbn978-1-6654-3541-3
dc.type.coarhttp://purl.org/coar/resource_type/c_5794
dc.description.reviewstatuspeerReviewed
dc.format.pagerange275-280
dc.relation.issn2334-0983
dc.type.versionacceptedVersion
dc.rights.copyright© 2022, IEEE
dc.rights.accesslevelopenAccessfi
dc.type.publicationconferenceObject
dc.relation.conferenceIEEE Global Communications Conference
dc.subject.ysotietosuoja
dc.subject.ysotiedonsiirto
dc.subject.ysosimulointi
dc.subject.ysoesineiden internet
dc.subject.ysokoneoppiminen
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p3636
jyx.subject.urihttp://www.yso.fi/onto/yso/p5429
jyx.subject.urihttp://www.yso.fi/onto/yso/p4787
jyx.subject.urihttp://www.yso.fi/onto/yso/p27206
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1109/globecom48099.2022.10000898
dc.type.okmA4


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright