Näytä suppeat kuvailutiedot

dc.contributor.authorVehkalahti, Roope
dc.contributor.authorLuzzi, Laura
dc.date.accessioned2023-02-06T12:50:15Z
dc.date.available2023-02-06T12:50:15Z
dc.date.issued2022
dc.identifier.citationVehkalahti, R., & Luzzi, L. (2022). The DMT of Real and Quaternionic Lattice Codes and DMT Classification of Division Algebra Codes. <i>IEEE Transactions on Information Theory</i>, <i>68</i>(5), 2999-3013. <a href="https://doi.org/10.1109/tit.2021.3137153" target="_blank">https://doi.org/10.1109/tit.2021.3137153</a>
dc.identifier.otherCONVID_103479828
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/85365
dc.description.abstractIn this paper we consider the diversity-multiplexing gain tradeoff (DMT) of so-called minimum delay asymmetric space-time codes for the n × m MIMO channel. Such codes correspond to lattices in Mn(C) with dimension smaller than 2n2. Currently, very little is known about their DMT, except in the case m = 1, corresponding to the multiple input single output (MISO) channel. Further, apart from the MISO case, no DMT optimal asymmetric codes are known. We first discuss previous criteria used to analyze the DMT of space-time codes and comment on why these methods fail when applied to asymmetric codes. We then consider two special classes of asymmetric codes where the code-words are restricted to either real or quaternion matrices. We prove two separate diversity-multiplexing gain trade-off (DMT) upper bounds for such codes and provide a criterion for a lattice code to achieve these upper bounds. We also show that lattice codes based on Q-central division algebras satisfy this optimality criterion. As a corollary this result provides a DMT classification for all Q-central division algebra codes that are based on standard embeddings. While the Q-central division algebra based codes achieve the largest possible DMT of a code restricted to either real or quaternion space, they still fall short of the optimal DMT apart from the MISO case.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherIEEE
dc.relation.ispartofseriesIEEE Transactions on Information Theory
dc.rightsIn Copyright
dc.subject.otherlattices
dc.subject.otheralgebra
dc.subject.otherspace-time codes
dc.subject.otherencoding
dc.subject.otherMIMO communication
dc.subject.othermaximum likelihood decoding
dc.subject.otherupper bound
dc.titleThe DMT of Real and Quaternionic Lattice Codes and DMT Classification of Division Algebra Codes
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202302061645
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange2999-3013
dc.relation.issn0018-9448
dc.relation.numberinseries5
dc.relation.volume68
dc.type.versionacceptedVersion
dc.rights.copyright© 2022, IEEE
dc.rights.accesslevelopenAccessfi
dc.subject.ysoalgebra
dc.subject.ysoMIMO-tekniikka
dc.subject.ysokoodausteoria
dc.subject.ysotiedonsiirto
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p12498
jyx.subject.urihttp://www.yso.fi/onto/yso/p38785
jyx.subject.urihttp://www.yso.fi/onto/yso/p27339
jyx.subject.urihttp://www.yso.fi/onto/yso/p5429
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1109/tit.2021.3137153
jyx.fundinginformationThe authors acknowledge the support of ENSEA (AAP SRV 2018) for funding R. Vehkalahti’s visit to ETIS in 2018. Academy of Finland (Grant Number: 299916).
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright