Show simple item record

dc.contributor.authorZuo, Xin
dc.contributor.authorZhang, Chi
dc.contributor.authorCong, Fengyu
dc.contributor.authorZhao, Jian
dc.contributor.authorHämäläinen, Timo
dc.date.accessioned2023-02-02T10:51:19Z
dc.date.available2023-02-02T10:51:19Z
dc.date.issued2022
dc.identifier.citationZuo, X., Zhang, C., Cong, F., Zhao, J., & Hämäläinen, T. (2022). Driver Distraction Detection Using Bidirectional Long Short-Term Network Based on Multiscale Entropy of EEG. <i>IEEE Transactions on Intelligent Transportation Systems</i>, <i>23</i>(10), 19309-19322. <a href="https://doi.org/10.1109/tits.2022.3159602" target="_blank">https://doi.org/10.1109/tits.2022.3159602</a>
dc.identifier.otherCONVID_117432719
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/85310
dc.description.abstractDriver distraction diverting drivers' attention to unrelated tasks and decreasing the ability to control vehicles, has aroused widespread concern about driving safety. Previous studies have found that driving performance decreases after distraction and have used vehicle behavioral features to detect distraction. But how brain activity changes while distraction remains unknown. Electroencephalography (EEG), a reliable indicator of brain activities has been widely employed in many fields. However, challenges still exist in mining the distraction information of EEG in realistic driving scenarios with uncertain information. In this paper, we propose a novel framework based on Multi-scale entropy (MSE) in a sliding window and Bidirectional Long Short-term Memory Network (BiLSTM) to explore the distraction information of EEG to detect driver distraction based on multi-modality signals in real traffic. Firstly, MSE with sliding window is implemented to extract the EEG features to determine the distraction position. Statistical analysis of vehicle behavioral data is then performed to validate driving performance indeed changes around distraction position. Finally, we use BiLSTM to detect driver distraction with MSE and other traditional features. Our results show that MSE notably decreases after distraction. Consistent with the result of MSE, driving performance significantly deviates from the normal state after distraction. Besides, BiLSTM performance of MSE outperforms other entropy-based methods and is better than behavioral features. Additionally, the accuracy is improved again after adding MSE feature to behavioral features with a 3% increasement. The proposed framework is useful for mining brain activity information and driver distraction detection applications in realistic driving scenarios.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherIEEE
dc.relation.ispartofseriesIEEE Transactions on Intelligent Transportation Systems
dc.rightsIn Copyright
dc.subject.otherhäiriötekijät
dc.subject.otherdriver distraction
dc.subject.otherEEG
dc.subject.otherdriving performance
dc.titleDriver Distraction Detection Using Bidirectional Long Short-Term Network Based on Multiscale Entropy of EEG
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202302021592
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineSecure Communications Engineering and Signal Processingfi
dc.contributor.oppiaineTekniikkafi
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineSecure Communications Engineering and Signal Processingen
dc.contributor.oppiaineEngineeringen
dc.contributor.oppiaineMathematical Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange19309-19322
dc.relation.issn1524-9050
dc.relation.numberinseries10
dc.relation.volume23
dc.type.versionacceptedVersion
dc.rights.copyright© IEEE 2022
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysoentropia
dc.subject.ysoajokyky
dc.subject.ysokognitiiviset prosessit
dc.subject.ysohavaitseminen
dc.subject.ysokuljettajat
dc.subject.ysoaivot
dc.subject.ysohäiriöt
dc.subject.ysoliikenneturvallisuus
dc.subject.ysoEEG
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p5009
jyx.subject.urihttp://www.yso.fi/onto/yso/p10682
jyx.subject.urihttp://www.yso.fi/onto/yso/p5283
jyx.subject.urihttp://www.yso.fi/onto/yso/p5293
jyx.subject.urihttp://www.yso.fi/onto/yso/p5501
jyx.subject.urihttp://www.yso.fi/onto/yso/p7040
jyx.subject.urihttp://www.yso.fi/onto/yso/p544
jyx.subject.urihttp://www.yso.fi/onto/yso/p517
jyx.subject.urihttp://www.yso.fi/onto/yso/p3328
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1109/tits.2022.3159602
jyx.fundinginformationThis work was supported in part by the National Natural Science Foundation of China under Grant 61703069 and Grant 62001312 and in part by the Fundamental Research Funds for the Central Universities under Grant DUT18RC(4)035 and Grant DUT21GF301.
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright