Näytä suppeat kuvailutiedot

dc.contributor.authorVernon, A. R.
dc.contributor.authorGarcia Ruiz, R. F.
dc.contributor.authorMiyagi, T.
dc.contributor.authorBinnersley, C. L.
dc.contributor.authorBillowes, J.
dc.contributor.authorBissell, M. L.
dc.contributor.authorBonnard, J.
dc.contributor.authorCocolios, T. E.
dc.contributor.authorDobaczewski, J.
dc.contributor.authorFarooq-Smith, G. J.
dc.contributor.authorFlanagan, K. T.
dc.contributor.authorGeorgiev, G.
dc.contributor.authorGins, W.
dc.contributor.authorde Groote, R. P.
dc.contributor.authorHeinke, R.
dc.contributor.authorHolt, J. D.
dc.contributor.authorHustings, J.
dc.contributor.authorKoszorús, Á.
dc.contributor.authorLeimbach, D.
dc.contributor.authorLynch, K. M.
dc.contributor.authorNeyens, G.
dc.contributor.authorStroberg, S. R.
dc.contributor.authorWilkins, S. G.
dc.contributor.authorYang, X. F.
dc.contributor.authorYordanov, D. T.
dc.date.accessioned2023-01-16T10:51:30Z
dc.date.available2023-01-16T10:51:30Z
dc.date.issued2022
dc.identifier.citationVernon, A. R., Garcia Ruiz, R. F., Miyagi, T., Binnersley, C. L., Billowes, J., Bissell, M. L., Bonnard, J., Cocolios, T. E., Dobaczewski, J., Farooq-Smith, G. J., Flanagan, K. T., Georgiev, G., Gins, W., de Groote, R. P., Heinke, R., Holt, J. D., Hustings, J., Koszorús, Á., Leimbach, D., . . . Yordanov, D. T. (2022). Nuclear moments of indium isotopes reveal abrupt change at magic number 82. <i>Nature</i>, <i>607</i>(7918), 260-265. <a href="https://doi.org/10.1038/s41586-022-04818-7" target="_blank">https://doi.org/10.1038/s41586-022-04818-7</a>
dc.identifier.otherCONVID_150915621
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/85026
dc.description.abstractIn spite of the high-density and strongly correlated nature of the atomic nucleus, experimental and theoretical evidence suggests that around particular ‘magic’ numbers of nucleons, nuclear properties are governed by a single unpaired nucleon1,2. A microscopic understanding of the extent of this behaviour and its evolution in neutron-rich nuclei remains an open question in nuclear physics3,4,5. The indium isotopes are considered a textbook example of this phenomenon6, in which the constancy of their electromagnetic properties indicated that a single unpaired proton hole can provide the identity of a complex many-nucleon system6,7. Here we present precision laser spectroscopy measurements performed to investigate the validity of this simple single-particle picture. Observation of an abrupt change in the dipole moment at N = 82 indicates that, whereas the single-particle picture indeed dominates at neutron magic number N = 82 (refs. 2,8), it does not for previously studied isotopes. To investigate the microscopic origin of these observations, our work provides a combined effort with developments in two complementary nuclear many-body methods: ab initio valence-space in-medium similarity renormalization group and density functional theory (DFT). We find that the inclusion of time-symmetry-breaking mean fields is essential for a correct description of nuclear magnetic properties, which were previously poorly constrained. These experimental and theoretical findings are key to understanding how seemingly simple single-particle phenomena naturally emerge from complex interactions among protons and neutrons.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherNature Publishing Group
dc.relation.ispartofseriesNature
dc.rightsIn Copyright
dc.titleNuclear moments of indium isotopes reveal abrupt change at magic number 82
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202301161330
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange260-265
dc.relation.issn0028-0836
dc.relation.numberinseries7918
dc.relation.volume607
dc.type.versionacceptedVersion
dc.rights.copyright© 2022, The Author(s), under exclusive licence to Springer Nature Limited
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber654002
dc.relation.grantnumber654002
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/654002/EU//
dc.subject.ysoindium
dc.subject.ysoydinfysiikka
dc.subject.ysotiheysfunktionaaliteoria
dc.subject.ysoisotoopit
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p38731
jyx.subject.urihttp://www.yso.fi/onto/yso/p14759
jyx.subject.urihttp://www.yso.fi/onto/yso/p28852
jyx.subject.urihttp://www.yso.fi/onto/yso/p6387
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.datasethttps://doi.org/10.5281/zenodo.6406949
dc.relation.doi10.1038/s41586-022-04818-7
dc.relation.funderEuropean Commissionen
dc.relation.funderEuroopan komissiofi
jyx.fundingprogramResearch infrastructures, H2020en
jyx.fundingprogramResearch infrastructures, H2020fi
jyx.fundinginformationThis work was supported by ERC Consolidator Grant no. 648381 (FNPMLS); STFC grants ST/L005794/1, ST/L005786/1, ST/P004423/1, ST/M006433/1 and ST/P003885/1, and Ernest Rutherford grant no. ST/L002868/1; the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under grant DE-SC0021176; GOA 15/010 from KU Leuven, BriX Research Program No. P7/12; the FWO-Vlaanderen (Belgium); the European Unions Grant Agreement 654002 (ENSAR2); National Key R&D Program of China (contract no. 2018YFA0404403); the National Natural Science Foundation of China (no. 11875073); the Polish National Science Centre under contract no. 2018/31/B/ST2/02220. TRIUMF receives funding by a contribution through the National Research Council of Canada. The theoretical work was further supported by NSERC and the U.S. Department of Energy under contract DE-FG02-97ER41014.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright