Show simple item record

dc.contributor.authorAntonelli, Gioacchino
dc.contributor.authorLe Donne, Enrico
dc.contributor.authorNicolussi Golo, Sebastiano
dc.date.accessioned2023-01-11T12:17:18Z
dc.date.available2023-01-11T12:17:18Z
dc.date.issued2023
dc.identifier.citationAntonelli, G., Le Donne, E., & Nicolussi Golo, S. (2023). Lipschitz Carnot-Carathéodory Structures and their Limits. <i>Journal of Dynamical and Control Systems</i>, <i>29</i>, 805-854. <a href="https://doi.org/10.1007/s10883-022-09613-1" target="_blank">https://doi.org/10.1007/s10883-022-09613-1</a>
dc.identifier.otherCONVID_164991042
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/84937
dc.description.abstractIn this paper we discuss the convergence of distances associated to converging structures of Lipschitz vector fields and continuously varying norms on a smooth manifold. We prove that, under a mild controllability assumption on the limit vector-fields structure, the distances associated to equi-Lipschitz vector-fields structures that converge uniformly on compact subsets, and to norms that converge uniformly on compact subsets, converge locally uniformly to the limit Carnot-Carathéodory distance. In the case in which the limit distance is boundedly compact, we show that the convergence of the distances is uniform on compact sets. We show an example in which the limit distance is not boundedly compact and the convergence is not uniform on compact sets. We discuss several examples in which our convergence result can be applied. Among them, we prove a subFinsler Mitchell’s Theorem with continuously varying norms, and a general convergence result for Carnot-Carathéodory distances associated to subspaces and norms on the Lie algebra of a connected Lie group.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer Science and Business Media LLC
dc.relation.ispartofseriesJournal of Dynamical and Control Systems
dc.rightsCC BY 4.0
dc.subject.othersub-Finsler geometry
dc.subject.othersub-Riemannian geometry
dc.subject.otherLipschitz vector fields
dc.subject.otherMitchell’s theorem
dc.titleLipschitz Carnot-Carathéodory Structures and their Limits
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202301111268
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineGeometrinen analyysi ja matemaattinen fysiikkafi
dc.contributor.oppiaineMatematiikkafi
dc.contributor.oppiaineAnalyysin ja dynamiikan tutkimuksen huippuyksikköfi
dc.contributor.oppiaineGeometric Analysis and Mathematical Physicsen
dc.contributor.oppiaineMathematicsen
dc.contributor.oppiaineAnalysis and Dynamics Research (Centre of Excellence)en
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange805-854
dc.relation.issn1079-2724
dc.relation.volume29
dc.type.versionpublishedVersion
dc.rights.copyright© The Author(s) 2022
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber713998
dc.relation.grantnumber713998
dc.relation.grantnumber288501
dc.relation.grantnumber322898
dc.relation.grantnumber328846
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/713998/EU//GeoMeG
dc.subject.ysosäätöteoria
dc.subject.ysodifferentiaaligeometria
dc.subject.ysomittateoria
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p868
jyx.subject.urihttp://www.yso.fi/onto/yso/p16682
jyx.subject.urihttp://www.yso.fi/onto/yso/p13386
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1007/s10883-022-09613-1
dc.relation.funderEuropean Commissionen
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderEuroopan komissiofi
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramERC Starting Granten
jyx.fundingprogramAcademy Research Fellow, AoFen
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramResearch costs of Academy Research Fellow, AoFen
jyx.fundingprogramERC Starting Grantfi
jyx.fundingprogramAkatemiatutkija, SAfi
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundingprogramAkatemiatutkijan tutkimuskulut, SAfi
jyx.fundinginformationOpen access funding provided by Scuola Normale Superiore within the CRUI-CARE Agreement. The authors are partially supported by the European Research Council (ERC Starting Grant 713998 GeoMeG ‘Geometry of Metric Groups’). E.L.D. was partially supported by the Academy of Finland (grant 288501 ‘Geometry of subRiemannian groups’ and by grant 322898 ‘Sub-Riemannian Geometry via Metric-geometry and Lie-group Theory’). S.N.G. has been supported by the Academy of Finland (grant 322898 ‘Sub-Riemannian Geometry via Metric-geometry and Lie-group Theory’, 328846 ‘Singular integrals, harmonic functions, and boundary regularity in Heisenberg groups’, and grant 314172 ‘Quantitative rectifiability in Euclidean and non-Euclidean spaces’).
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0