dc.contributor.author | Salo, Mikko | |
dc.contributor.author | Schlüter, Hjørdis | |
dc.date.accessioned | 2022-12-28T09:11:56Z | |
dc.date.available | 2022-12-28T09:11:56Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Salo, M., & Schlüter, H. (2022). Jacobian of solutions to the conductivity equation in limited view. <i>Inverse problems</i>, <i>Early online</i>. <a href="https://doi.org/10.1088/1361-6420/aca904" target="_blank">https://doi.org/10.1088/1361-6420/aca904</a> | |
dc.identifier.other | CONVID_164455865 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/84614 | |
dc.description.abstract | The aim of hybrid inverse problems such as Acousto-Electric Tomography or Current Density Imaging is the reconstruction of the electrical conductivity in a domain that can only be accessed from its exterior. In the inversion procedure, the solutions to the conductivity equation play a central role. In particular, it is important that the Jacobian of the solutions is non-vanishing. In the present paper we address a two-dimensional limited view setting, where only a part of the boundary of the domain can be controlled by a non-zero Dirichlet condition, while on the remaining boundary there is a zero Dirichlet condition. For this setting, we propose sufficient conditions on the boundary functions so that the Jacobian of the corresponding solutions is non-vanishing. In that regard we allow for discontinuous boundary functions, which requires the use of solutions in weighted Sobolev spaces. We implement the procedure of reconstructing a conductivity from power density data numerically and investigate how this limited view setting affects the Jacobian and the quality of the reconstructions. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | IOP Publishing | |
dc.relation.ispartofseries | Inverse problems | |
dc.rights | CC BY-NC-ND 4.0 | |
dc.subject.other | acousto-electric tomography | |
dc.subject.other | current density imaging | |
dc.subject.other | hybrid inverse problems | |
dc.subject.other | coupled physics imaging | |
dc.subject.other | non-vanishing Jacobian | |
dc.subject.other | conductivity equation | |
dc.title | Jacobian of solutions to the conductivity equation in limited view | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-202212285848 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 0266-5611 | |
dc.relation.volume | Early online | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © 2022 IOP Publishing Ltd. | |
dc.rights.accesslevel | openAccess | |
dc.type.publication | article | |
dc.relation.grantnumber | 770924 | |
dc.relation.grantnumber | 770924 | |
dc.relation.grantnumber | 284715 HY | |
dc.relation.projectid | info:eu-repo/grantAgreement/EC/H2020/770924/EU//IPTheoryUnified | |
dc.subject.yso | inversio-ongelmat | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p27912 | |
dc.rights.url | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.relation.doi | 10.1088/1361-6420/aca904 | |
dc.relation.funder | Euroopan komissio | fi |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | European Commission | en |
dc.relation.funder | Academy of Finland | en |
jyx.fundingprogram | ERC Consolidator Grant | fi |
jyx.fundingprogram | Huippuyksikkörahoitus, SA | fi |
jyx.fundingprogram | ERC Consolidator Grant | en |
jyx.fundingprogram | Centre of Excellence, AoF | en |
jyx.fundinginformation | M.S. was partly supported by the Academy of Finland (Centre of Excellence in Inverse Modelling and Imaging, grant 284715) and by the European Research Council under Horizon 2020 (ERC CoG 770924). | |
dc.type.okm | A1 | |