Show simple item record

dc.contributor.authorTaipalus, Toni
dc.contributor.authorIsomöttönen, Ville
dc.contributor.authorErkkilä, Hanna
dc.contributor.authorÄyrämö, Sami
dc.date.accessioned2022-12-22T08:40:51Z
dc.date.available2022-12-22T08:40:51Z
dc.date.issued2023
dc.identifier.citationTaipalus, T., Isomöttönen, V., Erkkilä, H., & Äyrämö, S. (2023). Data Analytics in Healthcare : A Tertiary Study. <i>SN Computer Science</i>, <i>4</i>(1), Article 87. <a href="https://doi.org/10.1007/s42979-022-01507-0" target="_blank">https://doi.org/10.1007/s42979-022-01507-0</a>
dc.identifier.otherCONVID_164489945
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/84553
dc.description.abstractThe field of healthcare has seen a rapid increase in the applications of data analytics during the last decades. By utilizing different data analytic solutions, healthcare areas such as medical image analysis, disease recognition, outbreak monitoring, and clinical decision support have been automated to various degrees. Consequently, the intersection of healthcare and data analytics has received scientific attention to the point of numerous secondary studies. We analyze studies on healthcare data analytics, and provide a wide overview of the subject. This is a tertiary study, i.e., a systematic review of systematic reviews. We identified 45 systematic secondary studies on data analytics applications in different healthcare sectors, including diagnosis and disease profiling, diabetes, Alzheimer’s disease, and sepsis. Machine learning and data mining were the most widely used data analytics techniques in healthcare applications, with a rising trend in popularity. Healthcare data analytics studies often utilize four popular databases in their primary study search, typically select 25–100 primary studies, and the use of research guidelines such as PRISMA is growing. The results may help both data analytics and healthcare researchers towards relevant and timely literature reviews and systematic mappings, and consequently, towards respective empirical studies. In addition, the meta-analysis presents a high-level perspective on prominent data analytics applications in healthcare, indicating the most popular topics in the intersection of data analytics and healthcare, and provides a big picture on a topic that has seen dozens of secondary studies in the last 2 decades.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer Science and Business Media LLC
dc.relation.ispartofseriesSN Computer Science
dc.rightsCC BY 4.0
dc.subject.otherdata-analytiikka
dc.subject.otherdata analytics
dc.subject.otherhealthcare
dc.subject.othermachine learning
dc.subject.otherdata mining
dc.subject.otherartificial intelligence
dc.titleData Analytics in Healthcare : A Tertiary Study
dc.typereview article
dc.identifier.urnURN:NBN:fi:jyu-202212225798
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineTutkintokoulutusfi
dc.contributor.oppiaineLaskennallinen tiedefi
dc.contributor.oppiaineComputing, Information Technology and Mathematicsfi
dc.contributor.oppiaineComputing Education Researchfi
dc.contributor.oppiaineHuman and Machine based Intelligence in Learningfi
dc.contributor.oppiaineDegree Educationen
dc.contributor.oppiaineComputational Scienceen
dc.contributor.oppiaineComputing, Information Technology and Mathematicsen
dc.contributor.oppiaineComputing Education Researchen
dc.contributor.oppiaineHuman and Machine based Intelligence in Learningen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_dcae04bc
dc.description.reviewstatuspeerReviewed
dc.relation.issn2662-995X
dc.relation.numberinseries1
dc.relation.volume4
dc.type.versionpublishedVersion
dc.rights.copyright© The Author(s) 2022
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysoterveydenhuolto
dc.subject.ysobig data
dc.subject.ysodata
dc.subject.ysotiedonlouhinta
dc.subject.ysokoneoppiminen
dc.subject.ysotekoäly
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p2658
jyx.subject.urihttp://www.yso.fi/onto/yso/p27202
jyx.subject.urihttp://www.yso.fi/onto/yso/p27250
jyx.subject.urihttp://www.yso.fi/onto/yso/p5520
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
jyx.subject.urihttp://www.yso.fi/onto/yso/p2616
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1007/s42979-022-01507-0
jyx.fundinginformationOpen Access funding provided by University of Jyväskylä (JYU). This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
dc.type.okmA2


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0