Show simple item record

dc.contributor.authorNiemelä, Marko
dc.contributor.authorKärkkäinen, Tommi
dc.contributor.editorTuovinen, Tero T.
dc.contributor.editorPeriaux, Jacques
dc.contributor.editorNeittaanmäki, Pekka
dc.date.accessioned2022-12-20T06:53:46Z
dc.date.available2022-12-20T06:53:46Z
dc.date.issued2022
dc.identifier.citationNiemelä, M., & Kärkkäinen, T. (2022). Improving Clustering and Cluster Validation with Missing Data Using Distance Estimation Methods. In T. T. Tuovinen, J. Periaux, & P. Neittaanmäki (Eds.), <i>Computational Sciences and Artificial Intelligence in Industry : New Digital Technologies for Solving Future Societal and Economical Challenges</i> (pp. 123-133). Springer. Intelligent Systems, Control and Automation: Science and Engineering, 76. <a href="https://doi.org/10.1007/978-3-030-70787-3_9" target="_blank">https://doi.org/10.1007/978-3-030-70787-3_9</a>
dc.identifier.otherCONVID_100292105
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/84512
dc.description.abstractMissing data introduces a challenge in the field of unsupervised learning. In clustering, when the form and the number of clusters are to be determined, one needs to deal with the missing values both in the clustering process and in the cluster validation. In the previous research, the clustering algorithm has been treated using robust clustering methods and available data strategy, and the cluster validation indices have been computed with the partial distance approximation. However, lately special methods for distance estimation with missing values have been proposed and this work is the first one where these methods are systematically applied and tested in clustering and cluster validation. More precisely, we propose, implement, and analyze the use of distance estimation methods to improve the discrimination power of clustering and cluster validation indices. A novel, robust prototype-based clustering process in two stages is suggested. Our results and conclusions confirm the usefulness of the distance estimation methods in clustering but, surprisingly, not in cluster validation.en
dc.format.extent275
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofComputational Sciences and Artificial Intelligence in Industry : New Digital Technologies for Solving Future Societal and Economical Challenges
dc.relation.ispartofseriesIntelligent Systems, Control and Automation: Science and Engineering
dc.rightsIn Copyright
dc.titleImproving Clustering and Cluster Validation with Missing Data Using Distance Estimation Methods
dc.typebookPart
dc.identifier.urnURN:NBN:fi:jyu-202212205765
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.type.urihttp://purl.org/eprint/type/BookItem
dc.relation.isbn978-3-030-70786-6
dc.type.coarhttp://purl.org/coar/resource_type/c_3248
dc.description.reviewstatuspeerReviewed
dc.format.pagerange123-133
dc.relation.issn2213-8986
dc.type.versionacceptedVersion
dc.rights.copyright© Springer Nature Switzerland AG 2022
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber315550
dc.relation.grantnumber311877
dc.subject.ysokoneoppiminen
dc.subject.ysoalgoritmit
dc.subject.ysoklusterianalyysi
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
jyx.subject.urihttp://www.yso.fi/onto/yso/p14524
jyx.subject.urihttp://www.yso.fi/onto/yso/p27558
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1007/978-3-030-70787-3_9
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Programme, AoFen
jyx.fundingprogramResearch profiles, AoFen
jyx.fundingprogramAkatemiaohjelma, SAfi
jyx.fundingprogramProfilointi, SAfi
jyx.fundinginformationThe authors would like to thank the Academy of Finland for the financial support (grants 311877 and 315550).
dc.type.okmA3


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright