Show simple item record

dc.contributor.authorTengvall, Ville
dc.date.accessioned2022-12-13T11:58:47Z
dc.date.available2022-12-13T11:58:47Z
dc.date.issued2022
dc.identifier.citationTengvall, V. (2022). Remarks on Martio’s conjecture. <i>Mathematica Scandinavica</i>, <i>128</i>(3), 534-552. <a href="https://doi.org/10.7146/math.scand.a-132257" target="_blank">https://doi.org/10.7146/math.scand.a-132257</a>
dc.identifier.otherCONVID_103463188
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/84346
dc.description.abstractWe introduce a certain integrability condition for the reciprocal of the Jacobian determinant whichguarantees the local homeomorphism property of quasiregular mappings with a small inner dilata-tion. This condition turns out to be sharp in the planar case. We also show that every branch pointof a quasiregular mapping with a small inner dilatation is a Lebesgue point of the differentialmatrix of the mapping.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherAarhus Universitet
dc.relation.ispartofseriesMathematica Scandinavica
dc.rightsIn Copyright
dc.titleRemarks on Martio’s conjecture
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202212135603
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineMatematiikkafi
dc.contributor.oppiaineMathematicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange534-552
dc.relation.issn0025-5521
dc.relation.numberinseries3
dc.relation.volume128
dc.type.versionacceptedVersion
dc.rights.copyright© Aarhus Universitet, 2022
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysomatematiikka
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p3160
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.7146/math.scand.a-132257
jyx.fundinginformationThis work was supported by the Academy of Finland, project number 308759.
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright