Developing Automated Feedback on Spoken Performance : Exploring the Functioning of Five Analytic Rating Scales Using Many-facet Rasch Measurement
Zansen, A. V., & Huhta, A. (2022). Developing Automated Feedback on Spoken Performance : Exploring the Functioning of Five Analytic Rating Scales Using Many-facet Rasch Measurement . In J. H. Jantunen, J. Kalja-Voima, M. Laukkarinen, A. Puupponen, M. Salonen, T. Saresma, J. Tarvainen, & S. Ylönen (Eds.), Diversity of Methods and Materials in Digital Human Sciences : Proceedings of the Digital Research Data and Human Sciences DRDHum Conference 2022, December 1-3, Jyväskylä, Finland (pp. 211-229). Jyväskylän yliopisto. http://urn.fi/URN:ISBN:978-951-39-9450-1
Toimittajat
Päivämäärä
2022Tekijänoikeudet
© 2022 Authors and University of Jyväskylä
2022:7 | 2023:79 | 2024:68 | 2025:3
In this study, we used the Many-facet Rasch measurement (MFRM) to explore the quality of ratings as well as the functioning of five analytic rating scales developed for automated assessment of L2 speech. This study is part of a multidisciplinary research project that develops automatic speech recognition (ASR), automated scoring and automated feedback for L2 Finnish and Swedish. The data include the analytic ratings (task completion, fluency, pronunciation, range, accuracy) gathered from human raters (n=14) who assessed L2 Finnish learners’ (n=64) speech samples using Moodle. The four-facet Rasch analysis showed that the raters performed and the rating scales functioned well, although task completion seems to be more challenging to apply consistently than the other criteria. Moreover, it proved to be more difficult to receive a certain score on some dimensions, namely fluency and range, than others. The study has implications for score reporting. We demonstrated that a) the different analytical rating scales have somewhat different structure, b) scores do not advance with equal intervals and c) a certain score on a certain dimension might require a bigger leap forward in ability than on other dimensions. The results will be used for designing encouraging and accurate automated feedback to L2 Finnish and Swedish learners.
...
Julkaisija
Jyväskylän yliopistoEmojulkaisun ISBN
978-951-39-9450-1Konferenssi
Digital Research Data and Human SciencesKuuluu julkaisuun
Diversity of Methods and Materials in Digital Human Sciences : Proceedings of the Digital Research Data and Human Sciences DRDHum Conference 2022, December 1-3, Jyväskylä, FinlandAsiasanat
Alkuperäislähde
http://urn.fi/URN:ISBN:978-951-39-9450-1Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/164255950
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiahanke, SALisätietoja rahoituksesta
The DigiTala project is funded by the Academy of Finland 2019–2023, and combines expertise in speech and language processing, language education and phonetics at the University of Helsinki (grant number 322619), Aalto University (grant number 322625) and the University of Jyväskylä (grant number 322965).Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Automated content assessment and feedback for Finnish L2 learners in a picture description speaking task
Phan, Nhan; von Zansen, Anna; Kautonen, Maria; Voskoboinik, Ekaterina; Grosz, Tamas; Hilden, Raili; Kurimo, Mikko (International Speech Communication Association, 2024)We propose a framework to address several unsolved challenges in second language (L2) automatic speaking assessment (ASA) and feedback. The challenges include: 1. ASA of visual task completion, 2. automated content grading ... -
CaptainA self-study mobile app for practising speaking : task completion assessment and feedback with generative AI
Phan, Nhan; von Zansen, Anna; Kautonen, Maria; Grosz, Tamas; Kurimo, Mikko (International Speech Communication Association, 2024)We introduce the CaptainA mobile app, designed to meet the needs of second language (L2) learners engaged in self-study of Finnish, with potential applicability to other languages. Our app can provide automatic speaking ... -
Prosody and fluency of Finland Swedish as a second language : Investigating global parameters for automated speaking assessment
Kallio, Heini; Kautonen, Maria; Kuronen, Mikko (Elsevier BV, 2023)This study investigates prosody and fluency of Finland Swedish as a second language (L2). The main objective is to investigate global measures of prosody and fluency as predictors of overall oral proficiency, fluency, and ... -
New data, benchmark and baseline for L2 speaking assessment for low-resoure languages
Kurimo, Mikko; Getman, Yaroslav; Voskoboinik, Ekaterina; Al-Ghezi, Ragheb; Kallio, Heini; Kuronen, Mikko; von Zansen, Anna; Hilden, Raili; Kronholm, Sirkku; Huhta, Ari; Linden, Krister (International Speech Communication Association, 2023)The development of large multilingual speech models provides the possibility to construct high-quality speech technology even for low-resource languages. In this paper, we present the speech data of L2 learners of Finnish ... -
Differences in acoustically determined sentence stress between native and L2 speakers of Finland Swedish
Kallio, Heini; Kuronen, Mikko; Kautonen, Maria (Lund University, 2021)This study describes a pilot attempt to use acoustically determined sentence stress in distinguishing native and L2 speakers of Finland Swedish at different proficiency levels. The study is part of the DigiTala project ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.