Näytä suppeat kuvailutiedot

dc.contributor.authorWang, Xiaoshuang
dc.contributor.authorKärkkäinen, Tommi
dc.contributor.authorCong, Fengyu
dc.date.accessioned2022-12-12T07:33:19Z
dc.date.available2022-12-12T07:33:19Z
dc.date.issued2022
dc.identifier.citationWang, X., Kärkkäinen, T., & Cong, F. (2022). Seizure Prediction Using EEG Channel Selection Method. In <i>MLSP 2022 : IEEE 32nd International Workshop on Machine Learning for Signal Processing</i>. IEEE. IEEE International Workshop on Machine Learning for Signal Processing. <a href="https://doi.org/10.1109/MLSP55214.2022.9943413" target="_blank">https://doi.org/10.1109/MLSP55214.2022.9943413</a>
dc.identifier.otherCONVID_160506895
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/84278
dc.description.abstractSeizure prediction using intracranial electroencephalogram (iEEG) is still challenging because of complicated signals in spatial and time domains. Feature selection in the spatial domain (i.e., channel selection) has been largely ignored in this field. Hence, in this paper, a novel approach of iEEG channel selection strategy combined with one-dimensional convolutional neural networks (1D-CNN) was presented for seizure prediction. First, 15-sec and 30-sec iEEG segments with an increasing number of channels (from one channel to all channels) were sequentially fed into 1D-CNN models for training and testing. Then, the channel case with the best classification rate was selected for each participant. We tested our method on the Freiburg iEEG dataset. A sensitivity of 89.03-90.84%, specificity of 98.99-99.73%, and accuracy of 98.07-98.99% were achieved at the segment-based level. At the event-based level, we attained a sensitivity of 98.48-98.85% and a false prediction rate (FPR) of 0-0.02/h.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherIEEE
dc.relation.ispartofMLSP 2022 : IEEE 32nd International Workshop on Machine Learning for Signal Processing
dc.relation.ispartofseriesIEEE International Workshop on Machine Learning for Signal Processing
dc.rightsIn Copyright
dc.subject.otherepilepsy
dc.subject.otherintracranial electroencephalogram (iEEG)
dc.subject.otherseizure prediction
dc.subject.otherchannel selection
dc.subject.otherone-dimensional convolutional neural networks (1D-CNN)
dc.titleSeizure Prediction Using EEG Channel Selection Method
dc.typeconferenceObject
dc.identifier.urnURN:NBN:fi:jyu-202212125536
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineTekniikkafi
dc.contributor.oppiaineHuman and Machine based Intelligence in Learningfi
dc.contributor.oppiaineSecure Communications Engineering and Signal Processingfi
dc.contributor.oppiaineMathematical Information Technologyen
dc.contributor.oppiaineEngineeringen
dc.contributor.oppiaineHuman and Machine based Intelligence in Learningen
dc.contributor.oppiaineSecure Communications Engineering and Signal Processingen
dc.type.urihttp://purl.org/eprint/type/ConferencePaper
dc.relation.isbn978-1-6654-8548-7
dc.type.coarhttp://purl.org/coar/resource_type/c_5794
dc.description.reviewstatuspeerReviewed
dc.relation.issn2161-0363
dc.type.versionacceptedVersion
dc.rights.copyright© 2022, IEEE
dc.rights.accesslevelopenAccessfi
dc.relation.conferenceIEEE International Workshop on Machine Learning for Signal Processing
dc.subject.ysoneuroverkot
dc.subject.ysosairauskohtaukset
dc.subject.ysosignaalianalyysi
dc.subject.ysosignaalinkäsittely
dc.subject.ysoepilepsia
dc.subject.ysoEEG
dc.subject.ysokoneoppiminen
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p7292
jyx.subject.urihttp://www.yso.fi/onto/yso/p19057
jyx.subject.urihttp://www.yso.fi/onto/yso/p26805
jyx.subject.urihttp://www.yso.fi/onto/yso/p12266
jyx.subject.urihttp://www.yso.fi/onto/yso/p9413
jyx.subject.urihttp://www.yso.fi/onto/yso/p3328
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1109/MLSP55214.2022.9943413
dc.type.okmA4


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright