Show simple item record

dc.contributor.authorAhlskog, M.
dc.contributor.authorHerranen, O.
dc.contributor.authorLeppäniemi, J.
dc.contributor.authorMtsuko, D.
dc.date.accessioned2022-11-29T10:47:18Z
dc.date.available2022-11-29T10:47:18Z
dc.date.issued2022
dc.identifier.citationAhlskog, M., Herranen, O., Leppäniemi, J., & Mtsuko, D. (2022). Conduction properties of semiconductive multiwalled carbon nanotubes. <i>European Physical Journal B - Condensed Matter and Complex Systems</i>, <i>95</i>(8), Article 130. <a href="https://doi.org/10.1140/epjb/s10051-022-00392-z" target="_blank">https://doi.org/10.1140/epjb/s10051-022-00392-z</a>
dc.identifier.otherCONVID_155859665
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/84135
dc.description.abstractWe have undertaken low-temperature conduction measurements on arc-discharge synthesized, semiconducting multiwalled carbon nanotubes (MWNT). The diameters of these are in the range 2.5–10 nm, corresponding to the sizes just above single-walled carbon nanotubes (SWNT), up to middle-sized MWNTs. The energy gap, inversely related to the diameter, varies strongly in this range, and consequently there is a strong dependence of the transport on tube diameter. Certain transport characteristics are much alike those found in SWNTs, such as the ON-state resistance and Coulomb blockade. However, the transport gap has a more complex behavior than the corresponding one in semiconducting SWNTs, and a number of features, such as negative differential resistance are commonly observed. Different models for the small bias transport behavior are briefly discussed, and we consider especially the possibility of conduction via the second layer.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer Science and Business Media LLC
dc.relation.ispartofseriesEuropean Physical Journal B - Condensed Matter and Complex Systems
dc.rightsCC BY 4.0
dc.titleConduction properties of semiconductive multiwalled carbon nanotubes
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202211295410
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.contributor.oppiaineNanoscience Centerfi
dc.contributor.oppiaineNanoscience Centeren
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn1434-6028
dc.relation.numberinseries8
dc.relation.volume95
dc.type.versionpublishedVersion
dc.rights.copyright© The Author(s) 2022
dc.rights.accesslevelopenAccessfi
dc.subject.ysonanorakenteet
dc.subject.ysopuolijohteet
dc.subject.ysosähkönjohtavuus
dc.subject.ysonanoputket
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p25315
jyx.subject.urihttp://www.yso.fi/onto/yso/p18256
jyx.subject.urihttp://www.yso.fi/onto/yso/p9399
jyx.subject.urihttp://www.yso.fi/onto/yso/p25661
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1140/epjb/s10051-022-00392-z
jyx.fundinginformationOpen Access funding provided by University of Jyväskylä (JYU).
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0