Show simple item record

dc.contributor.authorRaita-Hakola, Anna-Maria
dc.date.accessioned2022-11-22T08:24:32Z
dc.date.available2022-11-22T08:24:32Z
dc.date.issued2022
dc.identifier.isbn978-951-39-9240-8
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/84018
dc.description.abstractThe hypothesis of this study is “The machine vision systems should be designed, built and evaluated through the machine vision fundamental phases.” The dissertation defines the fundamentals inspired by the literature and shows how to use them and design a machine vision system from the sensor level to the analysis. The study covers the hardware and software designing phases, continuing to the data pre-processing, transformation and analysis phases. The conducted research consists of six published articles. Three have a data-analytical point of view concentrating on developing and testing new versions of a distance-based machine learning method Minimal Learning Machine (MLM). In contrast, the rest of the articles introduces a novel concept of 3D hyperspectral imaging and convolutional neural networks for detecting, classifying and delineating skin cancer on complex skin surfaces. The skin cancer imager concept includes devices, user interfaces, pre-processing, transformation and analysis. As the main results, we introduce the machine vision fundamentals with three effective variations from the MLM, which is suitable for hyperspectral imaging anomaly detection and classification tasks in real-time applications. Other outcomes were a novel hyperspectral imaging concept that can reach complex skin surfaces, opening the road for future optical biopsy. As skin cancers are the world’s third most common type of cancer, an optical biopsy can reduce diagnosis and treatment costs and save lives through early, accurate detection. The results confirm that by developing machine vision systems according to the application and paying attention to the machine vision fundamentals, it is possible, for example, to influence the system’s computational complexity and improve the system’s results. By understanding the multi-directional relations between the fundamental phases of a machine vision system, we can affect the overall performance. For instance, by designing a machine vision system that collects only the necessary data and uses optimised fast computational methods, we can affect the system’s efficiency, energy need and operating costs.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherJyväskylän yliopisto
dc.relation.ispartofseriesJYU Dissertations
dc.relation.haspart<b>Artikkeli I:</b> Hakola, A.-M., & Pölönen, I. (2020). Minimal learning machine in hyperspectral imaging classification. In <i>L. Bruzzone, F. Bovolo, & E. Santi (Eds.), Image and Signal Processing for Remote Sensing XXVI (Article 115330R). SPIE. Proceedings of SPIE : the International Society for Optical Engineering, 11533.</i> DOI: <a href="https://doi.org/10.1117/12.2573578"target="_blank">10.1117/12.2573578</a>. JYX: <a href="https://jyx.jyu.fi/handle/123456789/72431"target="_blank"> jyx.jyu.fi/handle/123456789/72431</a>
dc.relation.haspart<b>Artikkeli II:</b> Raita-Hakola, A.-M., & Pölönen, I. (2021). Piecewise anomaly detection using minimal learning machine for hyperspectral images. In <i>N. Paparoditis, C. Mallet, F. Lafarge, M. Y. Yang, J. Jiang, A. Shaker, H. Zhang, X. Liang, B. Osmanoglu, U. Soergel, E. Honkavaara, M. Scaioni, J. Zhang, A. Peled, L. Wu, R. Li, M. Yoshimura, K. Di, O. Altan, H. M. Abdulmuttalib, & F. S. Faruque (Eds.), XXIV ISPRS Congress Imaging today, foreseeing tomorrow, Commission III (pp. 89-96). Copernicus Publications. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, V-3-2021.</i> DOI: <a href="https://doi.org/10.5194/isprs-annals-V-3-2021-89-2021"target="_blank">10.5194/isprs-annals-V-3-2021-89-2021</a>
dc.relation.haspart<b>Artikkeli III:</b> Raita-Hakola, A.-M., & Pölönen, I. (2022). Updating strategies for distance based classification model with recursive least squares. In <i>J. Jiang, A. Shaker, & H. Zhang (Eds.), XXIV ISPRS Congress “Imaging today, foreseeing tomorrow”, Commission III (pp. 163-170). Copernicus Publications. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, V-3-2022.</i> DOI: <a href="https://doi.org/10.5194/isprs-annals-V-3-2022-163-2022"target="_blank">10.5194/isprs-annals-V-3-2022-163-2022</a>
dc.relation.haspart<b>Artikkeli IV:</b> Raita-Hakola, A.-M., Annala, L., Lindholm, V., Trops, R., Näsilä, A., Saari, H., Ranki, A., & Pölönen, I. (2022). FPI Based Hyperspectral Imager for the Complex Surfaces : Calibration, Illumination and Applications. <i>Sensors, 22(9), Article 3420.</i> DOI: <a href="https://doi.org/10.3390/s22093420"target="_blank">10.3390/s22093420</a>
dc.relation.haspart<b>Artikkeli V:</b> Lindholm, V., Raita-Hakola, A.-M., Annala, L., Salmivuori, M., Jeskanen, L., Saari, H., Koskenmies, S., Pitkänen, S., Pölönen, I., Isoherranen, K., & Ranki, A. (2022). Differentiating Malignant from Benign Pigmented or Non-Pigmented Skin Tumours : A Pilot Study on 3D Hyperspectral Imaging of Complex Skin Surfaces and Convolutional Neural Networks. <i>Journal of Clinical Medicine, 11(7), Article 1914.</i> DOI: <a href="https://doi.org/10.3390/jcm11071914"target="_blank">10.3390/jcm11071914</a>
dc.relation.haspart<b>Artikkeli VI:</b> Trops, R., Hakola, A.-M., Jääskeläinen, S., Näsilä, A., Annala, L., Eskelinen, M., Saari, H., Pölönen, I., & Rissanen, A. (2019). Miniature MOEMS hyperspectral imager with versatile analysis tools. In <i>W. Piyawattanametha, Y.-H. Park, & H. Zappe (Eds.), Proceedings of SPIE Volume 10931 : MOEMS and Miniaturized Systems XVIII; 109310W (Article 109310W). SPIE, The International Society for Optical Engineering. SPIE conference proceedings, 10931. </i> DOI: <a href="https://doi.org/10.1117/12.2506366"target="_blank">10.1117/12.2506366</a>. JYX: <a href="https://jyx.jyu.fi/handle/123456789/64968"target="_blank"> jyx.jyu.fi/handle/123456789/64968</a>
dc.rightsIn Copyright
dc.titleFrom sensors to machine vision systems: Exploring machine vision, computer vision and machine learning with hyperspectral imaging applications
dc.typeDiss.
dc.identifier.urnURN:ISBN:978-951-39-9240-8
dc.contributor.tiedekuntaFaculty of Information Technologyen
dc.contributor.tiedekuntaInformaatioteknologian tiedekuntafi
dc.contributor.yliopistoUniversity of Jyväskyläen
dc.contributor.yliopistoJyväskylän yliopistofi
dc.relation.issn2489-9003
dc.rights.copyright© The Author & University of Jyväskylä
dc.rights.accesslevelopenAccess
dc.type.publicationdoctoralThesis
dc.format.contentfulltext
dc.rights.urlhttps://rightsstatements.org/page/InC/1.0/


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright