dc.contributor.author | Stirbu, Vlad | |
dc.contributor.author | Granlund, Tuomas | |
dc.contributor.author | Mikkonen, Tommi | |
dc.date.accessioned | 2022-10-18T09:19:19Z | |
dc.date.available | 2022-10-18T09:19:19Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Stirbu, V., Granlund, T., & Mikkonen, T. (2023). Continuous design control for machine learning in certified medical systems. <i>Software Quality Journal</i>, <i>31</i>, 307-333. <a href="https://doi.org/10.1007/s11219-022-09601-5" target="_blank">https://doi.org/10.1007/s11219-022-09601-5</a> | |
dc.identifier.other | CONVID_159139101 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/83593 | |
dc.description.abstract | Continuous software engineering has become commonplace in numerous fields. However, in regulating intensive sectors, where additional concerns need to be taken into account, it is often considered difficult to apply continuous development approaches, such as devops. In this paper, we present an approach for using pull requests as design controls, and apply this approach to machine learning in certified medical systems leveraging model cards, a novel technique developed to add explainability to machine learning systems, as a regulatory audit trail. The approach is demonstrated with an industrial system that we have used previously to show how medical systems can be developed in a continuous fashion. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Springer | |
dc.relation.ispartofseries | Software Quality Journal | |
dc.rights | CC BY 4.0 | |
dc.subject.other | machine learning | |
dc.subject.other | design control | |
dc.subject.other | medical software | |
dc.subject.other | regulated software | |
dc.subject.other | continuous engineering | |
dc.title | Continuous design control for machine learning in certified medical systems | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-202210184913 | |
dc.contributor.laitos | Informaatioteknologian tiedekunta | fi |
dc.contributor.laitos | Faculty of Information Technology | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 307-333 | |
dc.relation.issn | 0963-9314 | |
dc.relation.volume | 31 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © The Author(s) 2022 | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.subject.yso | tekninen suunnittelu | |
dc.subject.yso | lääketieteellinen tekniikka | |
dc.subject.yso | tietokoneohjelmat | |
dc.subject.yso | koneoppiminen | |
dc.subject.yso | ohjelmistosuunnittelu (tietotekniikka) | |
dc.subject.yso | suunnittelu | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p24513 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p13486 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p26592 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p21846 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p27066 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p1377 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1007/s11219-022-09601-5 | |
jyx.fundinginformation | The authors wish to thank project AHMED and associated consortium, funded by Business Finland, for supporting this research. Open Access funding provided by University of Helsinki. | |
dc.type.okm | A1 | |