Show simple item record

dc.contributor.authorStirbu, Vlad
dc.contributor.authorGranlund, Tuomas
dc.contributor.authorMikkonen, Tommi
dc.date.accessioned2022-10-18T09:19:19Z
dc.date.available2022-10-18T09:19:19Z
dc.date.issued2023
dc.identifier.citationStirbu, V., Granlund, T., & Mikkonen, T. (2023). Continuous design control for machine learning in certified medical systems. <i>Software Quality Journal</i>, <i>31</i>, 307-333. <a href="https://doi.org/10.1007/s11219-022-09601-5" target="_blank">https://doi.org/10.1007/s11219-022-09601-5</a>
dc.identifier.otherCONVID_159139101
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/83593
dc.description.abstractContinuous software engineering has become commonplace in numerous fields. However, in regulating intensive sectors, where additional concerns need to be taken into account, it is often considered difficult to apply continuous development approaches, such as devops. In this paper, we present an approach for using pull requests as design controls, and apply this approach to machine learning in certified medical systems leveraging model cards, a novel technique developed to add explainability to machine learning systems, as a regulatory audit trail. The approach is demonstrated with an industrial system that we have used previously to show how medical systems can be developed in a continuous fashion.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofseriesSoftware Quality Journal
dc.rightsCC BY 4.0
dc.subject.othermachine learning
dc.subject.otherdesign control
dc.subject.othermedical software
dc.subject.otherregulated software
dc.subject.othercontinuous engineering
dc.titleContinuous design control for machine learning in certified medical systems
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202210184913
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange307-333
dc.relation.issn0963-9314
dc.relation.volume31
dc.type.versionpublishedVersion
dc.rights.copyright© The Author(s) 2022
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysotekninen suunnittelu
dc.subject.ysolääketieteellinen tekniikka
dc.subject.ysotietokoneohjelmat
dc.subject.ysokoneoppiminen
dc.subject.ysoohjelmistosuunnittelu (tietotekniikka)
dc.subject.ysosuunnittelu
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p24513
jyx.subject.urihttp://www.yso.fi/onto/yso/p13486
jyx.subject.urihttp://www.yso.fi/onto/yso/p26592
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
jyx.subject.urihttp://www.yso.fi/onto/yso/p27066
jyx.subject.urihttp://www.yso.fi/onto/yso/p1377
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1007/s11219-022-09601-5
jyx.fundinginformationThe authors wish to thank project AHMED and associated consortium, funded by Business Finland, for supporting this research. Open Access funding provided by University of Helsinki.
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0