Näytä suppeat kuvailutiedot

dc.contributor.authorHyrkäs, Markku
dc.date.accessioned2022-09-07T10:15:15Z
dc.date.available2022-09-07T10:15:15Z
dc.date.issued2022
dc.identifier.isbn978-951-39-9202-6
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/83140
dc.description.abstractQuantum many-body theory is a tool for modeling the behaviour of systems of many interacting quantum particles. It breaks transitions of the many-particle system from one state to another down to the possible ways this transition can occur in terms of interactions between individual particles. These possible transitions are depicted using diagrams, and can be further broken down into diagrams depicting the basic interaction processes from which the full transition process is build of. Any set of possible interaction processes can then be chosen and applied as corrections to a non-interacting system, thus building an approximate model of the interacting system, that only allows transitions via the included processes. What can reasonably be included in this way is necessarily a tiny subset of the full complexity of the many-body system. Still, in practice quantum many-body theory can be applied successfully to many real-world cases, since often the interactions involved in a specific process are primarily of the simplest types. The variety of different approximations that quantum many-body theory allows raises the question of choosing the best option for a particular application. The choice of an approximation is important not only in order to include the interaction processes that contribute to the phenomenon under investigation, but also to retain relevant properties of the exact system. Certain approximations can, for example, violate conservation laws (of energy, particle number etc.). This thesis addresses in particular another important property that can be violated in approximations: the positivity of probabilities. A recipe to construct positive approximations, i.e. approximations that are guaranteed to give non-negative probabilities, has been previously developed for system in equilibrium at zero-temperature [1, 2]. This recipe is based on diagrammatic cutting-rules, which are used to cut diagrams depicting basic interaction processes further into so called scattering diagrams. Expressing an approximation in terms of scattering diagrams makes its positivity, or lack of it, apparent. Furthermore, this approach makes the physical content of the diagrams more clear, providing further aid in the choice of the correct approximation. In this thesis cutting rules that can be applied to systems in finite temperature are developed, and used to generalize the recipe for building positive approximations. This generalized recipe works not only for finite temperature systems, but also for systems that are perturbed to non-equilibrium state from an initial equilibrium. Several general results related to working with complicated diagrams are also derived.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherJyväskylän yliopisto
dc.relation.ispartofseriesJYU Dissertations
dc.relation.haspart<b>Artikkeli I:</b> Hyrkäs, M., Karlsson, D., & van Leeuwen, R. (2019). Contour calculus for many-particle functions. <i>Journal of Physics A: Mathematical and Theoretical, 52(21), Article 215303.</i> DOI: <a href="https://doi.org/10.1088/1751-8121/ab165d"target="_blank">10.1088/1751-8121/ab165d </a>. JYX: <a href="https://jyx.jyu.fi/handle/123456789/82879"target="_blank"> jyx.jyu.fi/handle/123456789/82879</a>
dc.relation.haspart<b>Artikkeli II:</b> Hyrkäs, M., Karlsson, D., & van Leeuwen, R. (2019). Diagrammatic Expansion for Positive Spectral Functions in the Steady-State Limit. <i>Physica Status Solidi. B: Basic Research, 256(7), 1800615.</i> DOI: <a href="https://doi.org/10.1002/pssb.201800615"target="_blank">10.1002/pssb.201800615</a>. JYX: <a href="https://jyx.jyu.fi/handle/123456789/67347"target="_blank"> jyx.jyu.fi/handle/123456789/67347</a>
dc.relation.haspart<b>Artikkeli III:</b> Hyrkäs, M., Karlsson, D., & van Leeuwen, R. (2022). Cutting rules and positivity in finite temperature many-body theory. <i>Journal of Physics A : Mathematical and Theoretical, 55(33), Article 335301.</i> DOI: <a href="https://doi.org/10.1088/1751-8121/ac802d"target="_blank">10.1088/1751-8121/ac802d </a>. JYX: <a href="https://jyx.jyu.fi/handle/123456789/82804"target="_blank"> jyx.jyu.fi/handle/123456789/82804</a>
dc.rightsIn Copyright
dc.titleCutting rules in non-equilibrium many-body theory
dc.typedoctoral thesis
dc.identifier.urnURN:ISBN:978-951-39-9202-6
dc.contributor.tiedekuntaFaculty of Mathematics and Scienceen
dc.contributor.tiedekuntaMatemaattis-luonnontieteellinen tiedekuntafi
dc.contributor.yliopistoUniversity of Jyväskyläen
dc.contributor.yliopistoJyväskylän yliopistofi
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.relation.issn2489-9003
dc.rights.copyright© The Author & University of Jyväskylä
dc.rights.accesslevelopenAccess
dc.type.publicationdoctoralThesis
dc.format.contentfulltext
dc.rights.urlhttps://rightsstatements.org/page/InC/1.0/


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright