Näytä suppeat kuvailutiedot

dc.contributor.authorSpiliopoulos, Panagiotis
dc.contributor.authorGestranius, Marie
dc.contributor.authorZhang, Chao
dc.contributor.authorGhiyasi, Ramin
dc.contributor.authorTomko, John
dc.contributor.authorArstila, Kai
dc.contributor.authorPutkonen, Matti
dc.contributor.authorHopkins, Patrick E.
dc.contributor.authorKarppinen, Maarit
dc.contributor.authorTammelin, Tekla
dc.contributor.authorKontturi, Eero
dc.date.accessioned2022-08-24T07:07:12Z
dc.date.available2022-08-24T07:07:12Z
dc.date.issued2022
dc.identifier.citationSpiliopoulos, P., Gestranius, M., Zhang, C., Ghiyasi, R., Tomko, J., Arstila, K., Putkonen, M., Hopkins, P. E., Karppinen, M., Tammelin, T., & Kontturi, E. (2022). Cellulose-inorganic hybrids of strongly reduced thermal conductivity. <i>Cellulose</i>, <i>29</i>(15), 8151-8163. <a href="https://doi.org/10.1007/s10570-022-04768-3" target="_blank">https://doi.org/10.1007/s10570-022-04768-3</a>
dc.identifier.otherCONVID_151613160
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/82772
dc.description.abstractThe employment of atomic layer deposition and spin coating techniques for preparing inorganic–organic hybrid multilayer structures of alternating ZnO-CNC layers was explored in this study. Helium ion microscopy and X-ray reflectivity showed the superlattice formation for the nanolaminate structures and atomic force microscopy established the efficient control of the CNCs surface coverage on the Al-doped ΖnO by manipulating the concentration of the spin coating solution. Thickness characterization of the hybrid structures was performed via both ellipsometry and X-ray reflectivity and the thermal conductivity was examined by time domain thermoreflectance technique. It appears that even the incorporation of a limited amount of CNCs between the ZnO laminates strongly suppresses the thermal conductivity. Even small, submonolayer amounts of CNCs worked as a more efficient insulating material than hydroquinone or cellulose nanofibers which have been employed in previous studies.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer Science and Business Media LLC
dc.relation.ispartofseriesCellulose
dc.rightsCC BY 4.0
dc.subject.othercellulose nanocrystals
dc.subject.otherzinc oxide
dc.subject.otherhybrids
dc.subject.otherthermal conductivity
dc.subject.otheraluminum doping
dc.titleCellulose-inorganic hybrids of strongly reduced thermal conductivity
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202208244309
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.contributor.oppiaineFysiikkafi
dc.contributor.oppiaineYdin- ja kiihdytinfysiikan huippuyksikköfi
dc.contributor.oppiaineNanoscience Centerfi
dc.contributor.oppiainePhysicsen
dc.contributor.oppiaineCentre of Excellence in Nuclear and Accelerator Based Physicsen
dc.contributor.oppiaineNanoscience Centeren
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange8151-8163
dc.relation.issn0969-0239
dc.relation.numberinseries15
dc.relation.volume29
dc.type.versionpublishedVersion
dc.rights.copyright© 2022 Springer Nature B.V.
dc.rights.accesslevelopenAccessfi
dc.subject.ysosinkkioksidi
dc.subject.ysolämmön johtuminen
dc.subject.ysoatomikerroskasvatus
dc.subject.ysoohutkalvot
dc.subject.ysolämmöneristys
dc.subject.ysonanoselluloosa
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p27694
jyx.subject.urihttp://www.yso.fi/onto/yso/p19905
jyx.subject.urihttp://www.yso.fi/onto/yso/p27468
jyx.subject.urihttp://www.yso.fi/onto/yso/p16644
jyx.subject.urihttp://www.yso.fi/onto/yso/p19502
jyx.subject.urihttp://www.yso.fi/onto/yso/p26325
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1007/s10570-022-04768-3
jyx.fundinginformationOpen Access funding provided by Aalto University. PS and MG were funded by Academy of Finland (grants no. 300364 and 300367). MK and RG received funding from European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement (No. 765378), the Academy of Finland (Profi 3) and the use of RawMatters Finland Infrastructure (RAMI) at Aalto University. M.P received funding from the Academy of Finland by the profiling action on Matter and Materials, grant no. 318913. The work is a part of FinnCERES Materials Bioeconomy Ecosystem. PEH and JT received funding from the US Department of Defense, Multidisciplinary University Research Initiative through the Army Research Office, Grant no. W911NF-16-1-0406.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0