Estimating Grass Sward Quality and Quantity Parameters Using Drone Remote Sensing with Deep Neural Networks
Karila, K., Alves Oliveira, R., Ek, J., Kaivosoja, J., Koivumäki, N., Korhonen, P., Niemeläinen, O., Nyholm, L., Näsi, R., Pölönen, I., & Honkavaara, E. (2022). Estimating Grass Sward Quality and Quantity Parameters Using Drone Remote Sensing with Deep Neural Networks. Remote Sensing, 14(11), Article 2692. https://doi.org/10.3390/rs14112692
Julkaistu sarjassa
Remote SensingTekijät
Päivämäärä
2022Oppiaine
Laskennallinen tiedeComputing, Information Technology and MathematicsTietotekniikkaComputational ScienceComputing, Information Technology and MathematicsMathematical Information TechnologyTekijänoikeudet
© 2022 The Author(s).
The objective of this study is to investigate the potential of novel neural network architectures for measuring the quality and quantity parameters of silage grass swards, using drone RGB and hyperspectral images (HSI), and compare the results with the random forest (RF) method and handcrafted features. The parameters included fresh and dry biomass (FY, DMY), the digestibility of organic matter in dry matter (D-value), neutral detergent fiber (NDF), indigestible neutral detergent fiber (iNDF), water-soluble carbohydrates (WSC), nitrogen concentration (Ncont) and nitrogen uptake (NU); datasets from spring and summer growth were used. Deep pre-trained neural network architectures, the VGG16 and the Vision Transformer (ViT), and simple 2D and 3D convolutional neural networks (CNN) were studied. In most cases, the neural networks outperformed RF. The normalized root-mean-square errors (NRMSE) of the best models were for FY 19% (2104 kg/ha), DMY 21% (512 kg DM/ha), D-value 1.2% (8.6 g/kg DM), iNDF 12% (5.1 g/kg DM), NDF 1.1% (6.2 g/kg DM), WSC 10% (10.5 g/kg DM), Ncont 9% (2 g N/kg DM), and NU 22% (11.9 N kg/ha) using independent test dataset. The RGB data provided good results, particularly for the FY, DMY, WSC and NU. The HSI datasets provided advantages for some parameters. The ViT and VGG provided the best results with the RGB data, whereas the simple 3D-CNN was the most consistent with the HSI data.
...
Julkaisija
MDPI AGISSN Hae Julkaisufoorumista
2072-4292Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/150887493
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
This research was funded by Academy of Finland ICT 2023 Smart-HSI—“Smart hyperspectral imaging solutions for new era in Earth and planetary observations” (Decision no. 335612), by the European Agricultural Fund for Rural Development: Europe investing in rural areas, Pohjois-Savon Ely-keskus (Grant no. 145346) and by the European Regional Development Fund for “CyberGrass I—Introduction to remote sensing and artificial intelligence assisted silage production” project (ID 20302863) in European Union Interreg Botnia-Atlantica programme. This research was carried out in affiliation with the Academy of Finland Flagship “Forest-Human-Machine Interplay—Building Resilience, Redefining Value Networks and Enabling Meaningful Experiences (UNITE)” (Decision no. 337127) ecosystem. ...Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Comparison of Deep Neural Networks in the Classification of Bark Beetle-Induced Spruce Damage Using UAS Images
Turkulainen, Emma; Honkavaara, Eija; Näsi, Roope; Oliveira, Raquel A.; Hakala, Teemu; Junttila, Samuli; Karila, Kirsi; Koivumäki, Niko; Pelto-Arvo, Mikko; Tuviala, Johanna; Östersund, Madeleine; Pölönen, Ilkka; Lyytikäinen-Saarenmaa, Päivi (MDPI AG, 2023)The widespread tree mortality caused by the European spruce bark beetle (Ips typographus L.) is a significant concern for Norway spruce-dominated (Picea abies H. Karst) forests in Europe and there is evidence of increases ... -
Tree species classification of drone hyperspectral and RGB imagery with deep learning convolutional neural networks
Nezami, Somayeh; Khoramshahi, Ehsan; Nevalainen, Olli; Pölönen, Ilkka; Honkavaara, Eija (MDPI AG, 2020)Interest in drone solutions in forestry applications is growing. Using drones, datasets can be captured flexibly and at high spatial and temporal resolutions when needed. In forestry applications, fundamental tasks include ... -
Using Aerial Platforms in Predicting Water Quality Parameters from Hyperspectral Imaging Data with Deep Neural Networks
Hakala, Taina; Pölönen, Ilkka; Honkavaara, Eija; Näsi, Roope; Hakala, Teemu; Lindfors, Antti (Springer, 2020)In near future it is assumable that automated unmanned aerial platforms are coming more common. There are visions that transportation of different goods would be done with large planes, which can handle over 1000 kg payloads. ... -
Estimating Tree Health Decline Caused by Ips typographus L. from UAS RGB Images Using a Deep One-Stage Object Detection Neural Network
Kanerva, Heini; Honkavaara, Eija; Näsi, Roope; Hakala, Teemu; Junttila, Samuli; Karila, Kirsi; Koivumäki, Niko; Alves Oliveira, Raquel; Pelto-Arvo, Mikko; Pölönen, Ilkka; Tuviala, Johanna; Östersund, Madeleine; Lyytikäinen-Saarenmaa, Päivi (MDPI, 2022)Various biotic and abiotic stresses are causing decline in forest health globally. Presently, one of the major biotic stress agents in Europe is the European spruce bark beetle (Ips typographus L.) which is increasingly ... -
Differentiating Malignant from Benign Pigmented or Non-Pigmented Skin Tumours : A Pilot Study on 3D Hyperspectral Imaging of Complex Skin Surfaces and Convolutional Neural Networks
Lindholm, Vivian; Raita-Hakola, Anna-Maria; Annala, Leevi; Salmivuori, Mari; Jeskanen, Leila; Saari, Heikki; Koskenmies, Sari; Pitkänen, Sari; Pölönen, Ilkka; Isoherranen, Kirsi; Ranki, Annamari (MDPI AG, 2022)Several optical imaging techniques have been developed to ease the burden of skin cancer disease on our health care system. Hyperspectral images can be used to identify biological tissues by their diffuse reflected spectra. ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.