dc.contributor.author | López-Estrada, Omar | |
dc.contributor.author | Torres-Moreno, Jorge L. | |
dc.contributor.author | Zuniga-Gutierrez, Bernardo | |
dc.contributor.author | Calaminici, Patrizia | |
dc.contributor.author | Malola, Sami | |
dc.contributor.author | Köster, Andreas M. | |
dc.contributor.author | Häkkinen, Hannu | |
dc.date.accessioned | 2022-08-16T09:30:38Z | |
dc.date.available | 2022-08-16T09:30:38Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | López-Estrada, O., Torres-Moreno, J. L., Zuniga-Gutierrez, B., Calaminici, P., Malola, S., Köster, A. M., & Häkkinen, H. (2022). 1H NMR global diatropicity in copper hydride complexes. <i>Nanoscale</i>, <i>14</i>(35), 12668-12676. <a href="https://doi.org/10.1039/D2NR02415B" target="_blank">https://doi.org/10.1039/D2NR02415B</a> | |
dc.identifier.other | CONVID_151614339 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/82589 | |
dc.description.abstract | Understanding the magnetic response of electrons in nanoclusters is essential to interpret their NMR spectra thereby providing guidelines for their synthesis towards various target applications. Here, we consider two copper hydride clusters that have applications in hydrogen storage and release under standard temperature and pressure. Through Born–Oppenheimer molecular dynamics simulations, we study dynamics effects and their contributions to the NMR peaks. Finally, we examine the electrons’ magnetic response to an applied external magnetic field using the gauge-including magnetically induced currents theory. Local diatropic currents are generated in both clusters but an interesting global diatropic current also appears. This diatropic current has contributions from three μ3-H hydrides and six Cu atoms that form a chain together with three S atoms from the closest ligands resulting in a higher shielding of these hydrides’ 1H NMR response. This explains the unusual upfield chemical shift compared to the common downfield shift in similarly coordinated hydrides both observed in previous experimental reports. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Royal Society of Chemistry (RSC) | |
dc.relation.ispartofseries | Nanoscale | |
dc.rights | CC BY 3.0 | |
dc.title | 1H NMR global diatropicity in copper hydride complexes | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-202208164133 | |
dc.contributor.laitos | Fysiikan laitos | fi |
dc.contributor.laitos | Kemian laitos | fi |
dc.contributor.laitos | Department of Physics | en |
dc.contributor.laitos | Department of Chemistry | en |
dc.contributor.oppiaine | Nanoscience Center | fi |
dc.contributor.oppiaine | Nanoscience Center | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 12668-12676 | |
dc.relation.issn | 2040-3364 | |
dc.relation.numberinseries | 35 | |
dc.relation.volume | 14 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © The Royal Society of Chemistry 2022 | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.relation.grantnumber | 319208 | |
dc.relation.grantnumber | 294217 | |
dc.relation.grantnumber | 315549 | |
dc.relation.grantnumber | 317739 | |
dc.subject.yso | NMR-spektroskopia | |
dc.subject.yso | magneettikentät | |
dc.subject.yso | vety | |
dc.subject.yso | hydridit | |
dc.subject.yso | elektronit | |
dc.subject.yso | nanohiukkaset | |
dc.subject.yso | kupari | |
dc.subject.yso | nanorakenteet | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p26254 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p19032 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p16151 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p15466 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p4030 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p23451 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p19074 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p25315 | |
dc.rights.url | https://creativecommons.org/licenses/by/3.0/ | |
dc.relation.doi | 10.1039/D2NR02415B | |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Suomen Akatemia | fi |
jyx.fundingprogram | Research costs of Academy Professor, AoF | en |
jyx.fundingprogram | Research costs of Academy Professor, AoF | en |
jyx.fundingprogram | Academy Programme, AoF | en |
jyx.fundingprogram | Academy Project, AoF | en |
jyx.fundingprogram | Akatemiaprofessorin tutkimuskulut, SA | fi |
jyx.fundingprogram | Akatemiaprofessorin tutkimuskulut, SA | fi |
jyx.fundingprogram | Akatemiaohjelma, SA | fi |
jyx.fundingprogram | Akatemiahanke, SA | fi |
jyx.fundinginformation | This work was supported by the Academy of Finland (grants 294217, 319208, 315549, 317739), and through H. H.'s Academy Professorship. The authors wish to acknowledge CSC – IT Center for Science, Finland, for computational resources and the Barcelona Supercomputing Center as part of PRACE project no. 2018194723. B. Z. G. acknowledges funding from CONACyT project CB-2015-258647. At Cinvestav this work was supported by the SENER-CONACyT project 280158 and the CONACyT project A1-S-11929. | |
dc.type.okm | A1 | |