Show simple item record

dc.contributor.authorHaller, R.
dc.contributor.authorFülöp, G.
dc.contributor.authorIndolese, D.
dc.contributor.authorRidderbos, J.
dc.contributor.authorKraft, R.
dc.contributor.authorCheung, L. Y.
dc.contributor.authorUngerer, J. H.
dc.contributor.authorWatanabe, K.
dc.contributor.authorTaniguchi, T.
dc.contributor.authorBeckmann, D.
dc.contributor.authorDanneau, R.
dc.contributor.authorVirtanen, P.
dc.contributor.authorSchönenberger, C.
dc.date.accessioned2022-06-21T10:26:39Z
dc.date.available2022-06-21T10:26:39Z
dc.date.issued2022
dc.identifier.citationHaller, R., Fülöp, G., Indolese, D., Ridderbos, J., Kraft, R., Cheung, L. Y., Ungerer, J. H., Watanabe, K., Taniguchi, T., Beckmann, D., Danneau, R., Virtanen, P., & Schönenberger, C. (2022). Phase-dependent microwave response of a graphene Josephson junction. <i>Physical Review Research</i>, <i>4</i>(1), Article 013198. <a href="https://doi.org/10.1103/PhysRevResearch.4.013198" target="_blank">https://doi.org/10.1103/PhysRevResearch.4.013198</a>
dc.identifier.otherCONVID_145707925
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/81929
dc.description.abstractGate-tunable Josephson junctions embedded in a microwave environment provide a promising platform to in situ engineer and optimize novel superconducting quantum circuits. The key quantity for the circuit design is the phase-dependent complex admittance of the junction, which can be probed by sensing a radio frequency SQUID with a tank circuit. Here, we investigate a graphene-based Josephson junction as a prototype gate-tunable element enclosed in a SQUID loop that is inductively coupled to a superconducting resonator operating at 3 GHz. With a concise circuit model that describes the dispersive and dissipative response of the coupled system, we extract the phase-dependent junction admittance corrected for self-screening of the SQUID loop. We decompose the admittance into the current-phase relation and the phase-dependent loss, and as these quantities are dictated by the spectrum and population dynamics of the supercurrent-carrying Andreev bound states, we gain insight to the underlying microscopic transport mechanisms in the junction. We theoretically reproduce the experimental results by considering a short, diffusive junction model that takes into account the interaction between the Andreev spectrum and the electromagnetic environment, from which we estimate lifetimes on the order of ∼10 ps for nonequilibrium populations.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherAmerican Physical Society (APS)
dc.relation.ispartofseriesPhysical Review Research
dc.rightsCC BY 4.0
dc.titlePhase-dependent microwave response of a graphene Josephson junction
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202206213536
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.contributor.oppiaineNanoscience Centerfi
dc.contributor.oppiaineNanoscience Centeren
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn2643-1564
dc.relation.numberinseries1
dc.relation.volume4
dc.type.versionpublishedVersion
dc.rights.copyright© Authors, 2022
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber800923
dc.relation.grantnumber800923
dc.relation.grantnumber317118
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/800923/EU//SUPERTED
dc.subject.ysomikroaallot
dc.subject.ysonanoelektroniikka
dc.subject.ysosuprajohtavuus
dc.subject.ysografeeni
dc.subject.ysosuprajohteet
dc.subject.ysoelektroniset piirit
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p5741
jyx.subject.urihttp://www.yso.fi/onto/yso/p26991
jyx.subject.urihttp://www.yso.fi/onto/yso/p9398
jyx.subject.urihttp://www.yso.fi/onto/yso/p24483
jyx.subject.urihttp://www.yso.fi/onto/yso/p9946
jyx.subject.urihttp://www.yso.fi/onto/yso/p953
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1103/PhysRevResearch.4.013198
dc.relation.funderEuropean Commissionen
dc.relation.funderResearch Council of Finlanden
dc.relation.funderEuroopan komissiofi
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramFET Future and Emerging Technologies, H2020en
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramFET Future and Emerging Technologies, H2020fi
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundinginformationThis research was supported by the Swiss National Science Foundation through (a) Grants No. 172638 and No. 192027, (b) the National Centre of Competence in Research Quantum Science and Technology (QSIT), and (c) the QuantEra project SuperTop; the János Bolyai Research Scholarship of the Hungarian Academy of Sciences, the National Research Development and Innovation Office (NKFIH) through the OTKA Grants No. FK 132146 and No. NN127903 (FlagERA Topograph), and the National Research, Development and Innovation Fund of Hungary within the Quantum Technology National Excellence Program (Project No. 2017-1.2.1-NKP-2017-00001), the Quantum Information National Laboratory of Hungary and the ÚNKP-20-5 New National Excellence Program. We further acknowledge funding from the European Unions Horizon 2020 research and innovation programme, specifically (a) from the European Research Council (ERC) Grant Agreement No. 787414, ERC-Adv TopSupra, and (b) Grant Agreement No. 828948, FET-open project AndQC. This work was partly supported by Helmholtz society through program STN and the DFG via the projects DA 1280/3-1, DA 1280/7-1, and BE 4422/4-1. K. Watanabe and T. Taniguchi acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan, Grant No. JPMXP0112101001, JSPS KAKENHI Grant No. JP20H00354 and the CREST(JPMJCR15F3), JST and P. Virtanen acknowledges support from Academy of Finland Project 317118 and the European Union's Horizon 2020 Research and Innovation Framework Programme under Grant No. 800923 (SUPERTED).
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0