dc.contributor.author | Haller, R. | |
dc.contributor.author | Fülöp, G. | |
dc.contributor.author | Indolese, D. | |
dc.contributor.author | Ridderbos, J. | |
dc.contributor.author | Kraft, R. | |
dc.contributor.author | Cheung, L. Y. | |
dc.contributor.author | Ungerer, J. H. | |
dc.contributor.author | Watanabe, K. | |
dc.contributor.author | Taniguchi, T. | |
dc.contributor.author | Beckmann, D. | |
dc.contributor.author | Danneau, R. | |
dc.contributor.author | Virtanen, P. | |
dc.contributor.author | Schönenberger, C. | |
dc.date.accessioned | 2022-06-21T10:26:39Z | |
dc.date.available | 2022-06-21T10:26:39Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Haller, R., Fülöp, G., Indolese, D., Ridderbos, J., Kraft, R., Cheung, L. Y., Ungerer, J. H., Watanabe, K., Taniguchi, T., Beckmann, D., Danneau, R., Virtanen, P., & Schönenberger, C. (2022). Phase-dependent microwave response of a graphene Josephson junction. <i>Physical Review Research</i>, <i>4</i>(1), Article 013198. <a href="https://doi.org/10.1103/PhysRevResearch.4.013198" target="_blank">https://doi.org/10.1103/PhysRevResearch.4.013198</a> | |
dc.identifier.other | CONVID_145707925 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/81929 | |
dc.description.abstract | Gate-tunable Josephson junctions embedded in a microwave environment provide a promising platform to in situ engineer and optimize novel superconducting quantum circuits. The key quantity for the circuit design is the phase-dependent complex admittance of the junction, which can be probed by sensing a radio frequency SQUID with a tank circuit. Here, we investigate a graphene-based Josephson junction as a prototype gate-tunable element enclosed in a SQUID loop that is inductively coupled to a superconducting resonator operating at 3 GHz. With a concise circuit model that describes the dispersive and dissipative response of the coupled system, we extract the phase-dependent junction admittance corrected for self-screening of the SQUID loop. We decompose the admittance into the current-phase relation and the phase-dependent loss, and as these quantities are dictated by the spectrum and population dynamics of the supercurrent-carrying Andreev bound states, we gain insight to the underlying microscopic transport mechanisms in the junction. We theoretically reproduce the experimental results by considering a short, diffusive junction model that takes into account the interaction between the Andreev spectrum and the electromagnetic environment, from which we estimate lifetimes on the order of ∼10 ps for nonequilibrium populations. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | American Physical Society (APS) | |
dc.relation.ispartofseries | Physical Review Research | |
dc.rights | CC BY 4.0 | |
dc.title | Phase-dependent microwave response of a graphene Josephson junction | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-202206213536 | |
dc.contributor.laitos | Fysiikan laitos | fi |
dc.contributor.laitos | Department of Physics | en |
dc.contributor.oppiaine | Nanoscience Center | fi |
dc.contributor.oppiaine | Nanoscience Center | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 2643-1564 | |
dc.relation.numberinseries | 1 | |
dc.relation.volume | 4 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © Authors, 2022 | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.relation.grantnumber | 800923 | |
dc.relation.grantnumber | 800923 | |
dc.relation.grantnumber | 317118 | |
dc.relation.projectid | info:eu-repo/grantAgreement/EC/H2020/800923/EU//SUPERTED | |
dc.subject.yso | mikroaallot | |
dc.subject.yso | nanoelektroniikka | |
dc.subject.yso | suprajohtavuus | |
dc.subject.yso | grafeeni | |
dc.subject.yso | suprajohteet | |
dc.subject.yso | elektroniset piirit | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p5741 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p26991 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p9398 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p24483 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p9946 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p953 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1103/PhysRevResearch.4.013198 | |
dc.relation.funder | European Commission | en |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Euroopan komissio | fi |
dc.relation.funder | Suomen Akatemia | fi |
jyx.fundingprogram | FET Future and Emerging Technologies, H2020 | en |
jyx.fundingprogram | Academy Project, AoF | en |
jyx.fundingprogram | FET Future and Emerging Technologies, H2020 | fi |
jyx.fundingprogram | Akatemiahanke, SA | fi |
jyx.fundinginformation | This research was supported by the Swiss National Science Foundation through (a) Grants No. 172638 and No. 192027, (b) the National Centre of Competence in Research Quantum Science and Technology (QSIT), and (c) the QuantEra project SuperTop; the János Bolyai Research Scholarship of the Hungarian Academy of Sciences, the National Research Development and Innovation Office (NKFIH) through the OTKA Grants No. FK 132146 and No. NN127903 (FlagERA Topograph), and the National Research, Development and Innovation Fund of Hungary within the Quantum Technology National Excellence Program (Project No. 2017-1.2.1-NKP-2017-00001), the Quantum Information National Laboratory of Hungary and the ÚNKP-20-5 New National Excellence Program. We further acknowledge funding from the European Unions Horizon 2020 research and innovation programme, specifically (a) from the European Research Council (ERC) Grant Agreement No. 787414, ERC-Adv TopSupra, and (b) Grant Agreement No. 828948, FET-open project AndQC. This work was partly supported by Helmholtz society through program STN and the DFG via the projects DA 1280/3-1, DA 1280/7-1, and BE 4422/4-1. K. Watanabe and T. Taniguchi acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan, Grant No. JPMXP0112101001, JSPS KAKENHI Grant No. JP20H00354 and the CREST(JPMJCR15F3), JST and P. Virtanen acknowledges support from Academy of Finland Project 317118 and the European Union's Horizon 2020 Research and Innovation Framework Programme under Grant No. 800923 (SUPERTED). | |
dc.type.okm | A1 | |