Näytä suppeat kuvailutiedot

dc.contributor.authorBerghuis, Anton Matthijs
dc.contributor.authorTichauer, Ruth H.
dc.contributor.authorde Jong, Lianne M. A.
dc.contributor.authorSokolovskii, Ilia
dc.contributor.authorBai, Ping
dc.contributor.authorRamezani, Mohammad
dc.contributor.authorMurai, Shunsuke
dc.contributor.authorGroenhof, Gerrit
dc.contributor.authorGómez Rivas, Jaime
dc.date.accessioned2022-06-15T07:34:25Z
dc.date.available2022-06-15T07:34:25Z
dc.date.issued2022
dc.identifier.citationBerghuis, A. M., Tichauer, R. H., de Jong, L. M. A., Sokolovskii, I., Bai, P., Ramezani, M., Murai, S., Groenhof, G., & Gómez Rivas, J. (2022). Controlling Exciton Propagation in Organic Crystals through Strong Coupling to Plasmonic Nanoparticle Arrays. <i>ACS Photonics</i>, <i>9</i>(7), 2263-2272. <a href="https://doi.org/10.1021/acsphotonics.2c00007" target="_blank">https://doi.org/10.1021/acsphotonics.2c00007</a>
dc.identifier.otherCONVID_147094042
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/81719
dc.description.abstractExciton transport in most organic materials is based on an incoherent hopping process between neighboring molecules. This process is very slow, setting a limit to the performance of organic optoelectronic devices. In this Article, we overcome the incoherent exciton transport by strongly coupling localized singlet excitations in a tetracene crystal to confined light modes in an array of plasmonic nanoparticles. We image the transport of the resulting exciton–polaritons in Fourier space at various distances from the excitation to directly probe their propagation length as a function of the exciton to photon fraction. Exciton–polaritons with an exciton fraction of 50% show a propagation length of 4.4 μm, which is an increase by 2 orders of magnitude compared to the singlet exciton diffusion length. This remarkable increase has been qualitatively confirmed with both finite-difference time-domain simulations and atomistic multiscale molecular dynamics simulations. Furthermore, we observe that the propagation length is modified when the dipole moment of the exciton transition is either parallel or perpendicular to the cavity field, which opens a new avenue for controlling the anisotropy of the exciton flow in organic crystals. The enhanced exciton–polariton transport reported here may contribute to the development of organic devices with lower recombination losses and improved performance.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherAmerican Chemical Society
dc.relation.ispartofseriesACS Photonics
dc.rightsCC BY 4.0
dc.subject.othereksitonit
dc.subject.otherstrong light-matter coupling
dc.subject.otherpolariton transport
dc.subject.othermolecular dynamics simulations
dc.subject.othertetracene
dc.subject.otherplasmonics
dc.subject.othernanoparticle array
dc.titleControlling Exciton Propagation in Organic Crystals through Strong Coupling to Plasmonic Nanoparticle Arrays
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202206153329
dc.contributor.laitosKemian laitosfi
dc.contributor.laitosDepartment of Chemistryen
dc.contributor.oppiaineNanoscience Centerfi
dc.contributor.oppiaineFysikaalinen kemiafi
dc.contributor.oppiaineNanoscience Centeren
dc.contributor.oppiainePhysical Chemistryen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange2263-2272
dc.relation.issn2330-4022
dc.relation.numberinseries7
dc.relation.volume9
dc.type.versionpublishedVersion
dc.rights.copyright© 2022 the Authors
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber323996
dc.subject.ysoelektronit
dc.subject.ysonanohiukkaset
dc.subject.ysomolekyylidynamiikka
dc.subject.ysoplasmoniikka
dc.subject.ysofysikaalinen kemia
dc.subject.ysokvasihiukkaset
dc.subject.ysomolekyylifysiikka
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p4030
jyx.subject.urihttp://www.yso.fi/onto/yso/p23451
jyx.subject.urihttp://www.yso.fi/onto/yso/p29332
jyx.subject.urihttp://www.yso.fi/onto/yso/p39030
jyx.subject.urihttp://www.yso.fi/onto/yso/p7202
jyx.subject.urihttp://www.yso.fi/onto/yso/p38699
jyx.subject.urihttp://www.yso.fi/onto/yso/p17059
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1021/acsphotonics.2c00007
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundinginformationThis research is funded by the Innovational Research Incentives Scheme of the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO; Vici Grant 680-47-628) and the Academy of Finland (Grant 323996).
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0