dc.contributor.author | Moorthy, Suresh | |
dc.contributor.author | Castillo, Bonillo Alvaro | |
dc.contributor.author | Lambert, Hugues | |
dc.contributor.author | Kalenius, Elina | |
dc.contributor.author | Lee, Tung-Chun | |
dc.date.accessioned | 2022-05-19T07:10:47Z | |
dc.date.available | 2022-05-19T07:10:47Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Moorthy, S., Castillo, B. A., Lambert, H., Kalenius, E., & Lee, T.-C. (2022). Modulating the reaction pathway of phenyl diazonium ions using host–guest complexation with cucurbit[7]uril. <i>Chemical Communications</i>, <i>58</i>(22), 3617-3620. <a href="https://doi.org/10.1039/d1cc06982a" target="_blank">https://doi.org/10.1039/d1cc06982a</a> | |
dc.identifier.other | CONVID_104384161 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/81137 | |
dc.description.abstract | Aryl diazonium ions are known to be an important intermediate in the divergent synthesis of azo compounds and substituted aromatics. The presence of more than one electrophilic center in a diazonium ion could lead to undesirable side reactions during a synthesis. Herein, we report that the electrophilic α-carbon on a phenyl diazonium [PhN2]+ ion can be selectively deactivated upon host–guest complexation with cucurbit[7]uril (CB7) in aqueous media, achieving a ∼60-fold increase in the half-life of [PhN2]+. Notably, however, the electrophilic nitrogen of the encapsulated diazonium ion remains active towards diazo coupling with strong nucleophiles, allowing the formation of azo compounds using a two-month-old aqueous solution of [CB7–PhN2]+. Our supramolecular approach can open new possibilities for the reactive chemistry of organic molecules in aqueous media. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Royal Society of Chemistry (RSC) | |
dc.relation.ispartofseries | Chemical Communications | |
dc.rights | CC BY 3.0 | |
dc.title | Modulating the reaction pathway of phenyl diazonium ions using host–guest complexation with cucurbit[7]uril | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-202205192769 | |
dc.contributor.laitos | Kemian laitos | fi |
dc.contributor.laitos | Department of Chemistry | en |
dc.contributor.oppiaine | Orgaaninen kemia | fi |
dc.contributor.oppiaine | Analyyttinen kemia | fi |
dc.contributor.oppiaine | Nanoscience Center | fi |
dc.contributor.oppiaine | Organic Chemistry | en |
dc.contributor.oppiaine | Analytical Chemistry | en |
dc.contributor.oppiaine | Nanoscience Center | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 3617-3620 | |
dc.relation.issn | 1359-7345 | |
dc.relation.numberinseries | 22 | |
dc.relation.volume | 58 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © Authors, 2022 | |
dc.rights.accesslevel | openAccess | fi |
dc.subject.yso | supramolekulaarinen kemia | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p37759 | |
dc.rights.url | https://creativecommons.org/licenses/by/3.0/ | |
dc.relation.doi | 10.1039/d1cc06982a | |
jyx.fundinginformation | This work is funded by the Leverhulme Trust (RPG-2016-393). A. C. B. is grateful to the A*STAR-UCL Studentship funded via the EPSRC M3S CDT (EP/L015862/1). We acknowledge the use of the UCL Myriad high performance computing facility, and the UK Materials and Molecular Modelling Hub, which are partially funded by EPSRC (EP/P020194/1). | |
dc.type.okm | A1 | |