Show simple item record

dc.contributor.authorLummis, Paul A.
dc.contributor.authorOsten, Kimberly M.
dc.contributor.authorLevchenko, Tetyana I.
dc.contributor.authorSabooni Asre Hazer, Maryam
dc.contributor.authorMalola, Sami
dc.contributor.authorOwens-Baird, Bryan
dc.contributor.authorVeinot, Alex J.
dc.contributor.authorAlbright, Emily L.
dc.contributor.authorSchatte, Gabriele
dc.contributor.authorTakano, Shinjiro
dc.contributor.authorKovnir, Kirill
dc.contributor.authorStamplecoskie, Kevin G.
dc.contributor.authorTsukuda, Tatsuya
dc.contributor.authorHäkkinen, Hannu
dc.contributor.authorNambo, Masakazu
dc.contributor.authorCrudden, Cathleen M.
dc.date.accessioned2022-04-11T11:45:27Z
dc.date.available2022-04-11T11:45:27Z
dc.date.issued2022
dc.identifier.citationLummis, P. A., Osten, K. M., Levchenko, T. I., Sabooni Asre Hazer, M., Malola, S., Owens-Baird, B., Veinot, A. J., Albright, E. L., Schatte, G., Takano, S., Kovnir, K., Stamplecoskie, K. G., Tsukuda, T., Häkkinen, H., Nambo, M., & Crudden, C. M. (2022). NHC-Stabilized Au10 Nanoclusters and Their Conversion to Au25 Nanoclusters. <i>JACS Au</i>, <i>2</i>(4), 875-885. <a href="https://doi.org/10.1021/jacsau.2c00004" target="_blank">https://doi.org/10.1021/jacsau.2c00004</a>
dc.identifier.otherCONVID_117640317
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/80551
dc.description.abstractHerein, we describe the synthesis of a toroidal Au10 cluster stabilized by N-heterocyclic carbene and halide ligands via reduction of the corresponding NHC−Au−X complexes (X = Cl, Br, I). The significant effect of the halide ligands on the formation, stability, and further conversions of these clusters is presented. While solutions of the chloride derivatives of Au10 show no change even upon heating, the bromide derivative readily undergoes conversion to form a biicosahedral Au25 cluster at room temperature. For the iodide derivative, the formation of a significant amount of Au25 was observed even upon the reduction of NHC−Au−I. The isolated bromide derivative of the Au25 cluster displays a relatively high (ca. 15%) photoluminescence quantum yield, attributed to the high rigidity of the cluster, which is enforced by multiple CH−π interactions within the molecular structure. Density functional theory computations are used to characterize the electronic structure and optical absorption of the Au10 cluster. 13C-Labeling is employed to assist with characterization of the products and to observe their conversions by NMR spectroscopy.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherAmerican Chemical Society (ACS)
dc.relation.ispartofseriesJACS Au
dc.rightsCC BY-NC-ND 4.0
dc.subject.otheranions
dc.subject.otherabsorption
dc.subject.otherligands
dc.subject.othergold
dc.subject.othermetal clusters
dc.titleNHC-Stabilized Au10 Nanoclusters and Their Conversion to Au25 Nanoclusters
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202204112229
dc.contributor.laitosKemian laitosfi
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Chemistryen
dc.contributor.laitosDepartment of Physicsen
dc.contributor.oppiaineFysikaalinen kemiafi
dc.contributor.oppiaineNanoscience Centerfi
dc.contributor.oppiainePhysical Chemistryen
dc.contributor.oppiaineNanoscience Centeren
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange875-885
dc.relation.issn2691-3704
dc.relation.numberinseries4
dc.relation.volume2
dc.type.versionpublishedVersion
dc.rights.copyright© 2022 the Authors
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber294217
dc.relation.grantnumber319208
dc.subject.ysokulta
dc.subject.ysonanohiukkaset
dc.subject.ysoanionit
dc.subject.ysoligandit
dc.subject.ysoabsorptio
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p19016
jyx.subject.urihttp://www.yso.fi/onto/yso/p23451
jyx.subject.urihttp://www.yso.fi/onto/yso/p27229
jyx.subject.urihttp://www.yso.fi/onto/yso/p24741
jyx.subject.urihttp://www.yso.fi/onto/yso/p4151
dc.rights.urlhttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.relation.doi10.1021/jacsau.2c00004
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramResearch costs of Academy Professor, AoFen
jyx.fundingprogramResearch costs of Academy Professor, AoFen
jyx.fundingprogramAkatemiaprofessorin tutkimuskulut, SAfi
jyx.fundingprogramAkatemiaprofessorin tutkimuskulut, SAfi
jyx.fundinginformationThe Natural Sciences and Engineering Research Council of Canada (NSERC) and the Canada Foundation for Innovation (CFI) are thanked for financial support of this work in terms of operating and equipment grants. K.M.O thanks JSPS for funding through the JSPS International Research Fellow program. T.I.L. thanks NSERC for a postdoctoral fellowship. A.J.V thanks NSERC for a Vanier Scholarship and also the Walter C. Sumner Foundation for a Walter C. Sumner Memorial Fellowship. E.L.A thanks NSERC CREATEMaterials for the Advanced Photonics and Sensing (MAPS) Program. This work was supported by KAKENHI from JSPS (17H03030 and 21H01949 to C.M.C.; 20H00370 to T.T.), JST CREST (JPMJCR20B2 to T. T.), and PRF (59632-ND3 to C.M.C). JSPS and NU are acknowledged for funding of this research through the World Premier International Research Centre Initiative (WPI) Program. K.K. is thankful to the National Science Foundation DMR-2003783 grant for support. The theory work was supported by the Academy of Finland (grants 294217, 319208, and HH’s Academy Professorship). The computations were made at the Jyväskylä node of the Finnish Grid and Cloud infrastructure (FGCI).
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY-NC-ND 4.0
Except where otherwise noted, this item's license is described as CC BY-NC-ND 4.0