Näytä suppeat kuvailutiedot

dc.contributor.authorAkbar, Muhammad Azeem
dc.contributor.authorKhan, Arif Ali
dc.contributor.authorHuang, Zhiqiu
dc.date.accessioned2022-03-17T12:17:02Z
dc.date.available2022-03-17T12:17:02Z
dc.date.issued2023
dc.identifier.citationAkbar, M. A., Khan, A. A., & Huang, Z. (2023). Multicriteria decision making taxonomy of code recommendation system challenges : a fuzzy-AHP analysis. <i>Information Technology and Management</i>, <i>24</i>(2), 115-131. <a href="https://doi.org/10.1007/s10799-021-00355-3" target="_blank">https://doi.org/10.1007/s10799-021-00355-3</a>
dc.identifier.otherCONVID_104641802
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/80231
dc.description.abstractThe recommendation systems plays an important role in today’s life as it assist in reliable selection of common utilities. The code recommendation system is being used by the code databases (GitHub, source frog etc.) aiming to recommend the more appropriate code to the users. There are several factors that could negatively impact the performance of code recommendation systems (CRS). This study aims to empirically explore the challenges that could have critical impact on the performance of the CRS. Using systematic literature review and questionnaire survey approaches, 19 challenges were identified. Secondly, the investigated challenges were further prioritized using fuzzy-AHP analysis. The identification of challenges, their categorization and the fuzzy-AHP analysis provides the prioritization-based taxonomy of explored challenges. The study findings will assist the real-world industry experts and to academic researchers to improve and develop the new techniques for the improvement of CRS.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer Science and Business Media LLC
dc.relation.ispartofseriesInformation Technology and Management
dc.rightsCC BY 4.0
dc.subject.othercode recommendation system
dc.subject.otherempirical investigations
dc.subject.otherFuzzy-AHP
dc.titleMulticriteria decision making taxonomy of code recommendation system challenges : a fuzzy-AHP analysis
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202203171930
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange115-131
dc.relation.issn1385-951X
dc.relation.numberinseries2
dc.relation.volume24
dc.type.versionpublishedVersion
dc.rights.copyright© The Author(s) 2022
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysolähdekoodit
dc.subject.ysotietokannat
dc.subject.ysosuosittelujärjestelmät
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p9343
jyx.subject.urihttp://www.yso.fi/onto/yso/p3056
jyx.subject.urihttp://www.yso.fi/onto/yso/p28483
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1007/s10799-021-00355-3
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0