Design, construction and operation of the ProtoDUNE-SP Liquid Argon TPC
DUNE Collaboration. (2022). Design, construction and operation of the ProtoDUNE-SP Liquid Argon TPC. Journal of Instrumentation, 17(1), Article P01005. https://doi.org/10.1088/1748-0221/17/01/P01005
Julkaistu sarjassa
Journal of InstrumentationTekijät
Päivämäärä
2022Tekijänoikeudet
© 2022 CERN. Published by IOP Publishing Ltd on behalf of Sissa
Medialab.
The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber (LArTPC) that was constructed and operated in the CERN North Area at the end of the H4 beamline. This detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment (DUNE), which will be constructed at the Sandford Underground Research Facility (SURF) in Lead, South Dakota, U.S.A. The ProtoDUNE-SP detector incorporates full-size components as designed for DUNE and has an active volume of 7 × 6 × 7.2 m3. The H4 beam delivers incident particles with well-measured momenta and high-purity particle identification. ProtoDUNE-SP's successful operation between 2018 and 2020 demonstrates the effectiveness of the single-phase far detector design. This paper describes the design, construction, assembly and operation of the detector components.
Julkaisija
IOP PublishingISSN Hae Julkaisufoorumista
1748-0221Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/104476407
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
The ProtoDUNE-SP detector was constructed and operated on the CERN Neutrino Platform. We gratefully acknowledge the support of the CERN management, and the CERN EP, BE, TE, EN and IT Departments for NP04/ProtoDUNE-SP. This document was prepared by the DUNE collaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. This work was supported by CNPq, FAPERJ, FAPEG and FAPESP, Brazil; CFI, IPP and NSERC, Canada; CERN; MŠMT, Czech Republic; ERDF, H2020-EU and MSCA, European Union; CNRS/IN2P3 and CEA, France; INFN, Italy; FCT, Portugal; NRF, South Korea; CAM, Fundación “La Caixa”, Junta de Andalucía-FEDER, and MICINN, Spain; SERI and SNSF, Switzerland; TÜBİTAK, Turkey; The Royal Society and UKRI/STFC, United Kingdom; DOE and NSF, United States of America. This research used resources of the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility operated under Contract No. DE-AC02-05CH11231. ...Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform
The DUNE collaboration (Institute of Physics, 2020)The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber with an active volume of 7.2× 6.1× 7.0 m3. It is installed at the CERN Neutrino Platform in a specially-constructed beam that delivers charged ... -
Performance study of a 3×1×1 m3 dual phase liquid Argon Time Projection Chamber exposed to cosmic rays
WA105 collaboration (IOP Publishing, 2021)We report the results of the analyses of the cosmic ray data collected with a 4 tonne (3×1×1 m3) active mass (volume) Liquid Argon Time-Projection Chamber (TPC) operated in a dual-phase mode. We present a detailed study ... -
A 4 tonne demonstrator for large-scale dual-phase liquid argon time projection chambers
Aimard, B.; Alt, Ch.; Asaadi, J.; Auger, M.; Aushev, V.; Autiero, D.; Badoi, M.M.; Balaceanu, A.; Balik, G.; Balleyguier, L.; Bechetoille, E.; Belver, D.; Blebea-Apostu, A.M.; Bolognesi, S.; Bordoni, S.; Bourgeois, N.; Bourguille, B.; Bremer, J.; Brown, G.; Brunetti, G.; Brunetti, L.; Caiulo, D.; Calin, M.; Calvo, E.; Campanelli, M.; Cankocak, K.; Cantini, C.; Carlus, B.; Cautisanu, B.M.; Chalifour, M.; Chappuis, A.; Charitonidis, N.; Chatterjee, A.; Chiriacescu, A.; Chiu, P.; Conforti, S.; Cotte, P.; Crivelli, P.; Cuesta, C.; Dawson, J.; De Bonis, I.; De La Taille, C.; Delbart, A.; Desforge, D.; Luise, S. Di; Dimitru, B.S.; Doizon, F.; Drancourt, C.; Duchesneau, D.; Dulucq, F.; Dumarchez, J.; Duval, F.; Emery, S.; Ereditato, A.; Esanu, T.; Falcone, A.; Fusshoeller, K.; Gallego-Ros, A.; Galymov, V.; Geffroy, N.; Gendotti, A.; Gherghel-Lascu, M.; Giganti, C.; Gil-Botella, I.; Girerd, C.; Gomoiu, M.C.; Gorodetzky, P.; Hamada, E.; Hanni, R.; Hasegawa, T.; Holin, A.; Horikawa, S.; Ikeno, M.; Jiménez, S.; Jipa, A.; Karolak, M.; Karyotakis, Y.; Kasai, S.; Kasami, K.; Kishishita, T.; Kreslo, I.; Kryn, D.; Lastoria, C.; Lazanu, I.; Lehmann-Miotto, G.; Lira, N.; Loo, Kai; Lorca, D.; Lutz, P.; Lux, T.; Maalampi, Jukka; Mair, G.; Maki, M.; Manenti, L.; Margineanu, R.M.; Marteau, J.; Martin-Chassard, G.; Mathez, H.; Mazzucato, E.; Misitano, G.; Mitrica, B.; Mladenov, D.; Bueno, L. Molina; Martínez, C. Moreno; Mols, J.P.; Mosu, T.S.; Mu, W.; Munteanu, A.; Murphy, S.; Nakayoshi, K.; Narita, S.; Navas-Nicolás, D.; Negishi, K.; Nessi, M.; Niculescu-Oglinzanu, M.; Nita, L.; Noto, F.; Noury, A.; Onishchuk, Y.; Palomares, C.; Parvu, M.; Patzak, T.; Pénichot, Y.; Pennacchio, E.; Periale, L.; Pessard, H.; Pietropaolo, F.; Piret, Y.; Popov, B.; Pugnere, D.; Radics, B.; Redondo, D.; Regenfus, C.; Remoto, A.; Resnati, F.; Rigaut, Y.A.; Ristea, C.; Rubbia, A.; Saftoiu, A.; Sakashita, K.; Sanchez, F.; Santos, C.; Scarpelli, A.; Schloesser, C.; Lavina, L. Scotto; Sendai, K.; Sergiampietri, F.; Shahsavarani, S.; Shoji, M.; Sinclair, J.; Soto-Oton, J.; Stanca, D.L.; Stefan, D.; Stroescu, P.; Sulej, R.; Tanaka, M.; Toboaru, V.; Tonazzo, A.; Tromeur, W.; Trzaska, Wladyslaw; Uchida, T.; Vannucci, F.; Vasseur, G.; Verdugo, A.; Viant, T.; Vihonen, Sampsa; Vilalte, S.; Weber, M.; Wu, S.; Yu, J.; Zambelli, L.; Zito, M. (Institute of Physics Publishing Ltd., 2018)A 10 kilo-tonne dual-phase liquid argon TPC is one of the detector options considered for the Deep Underground Neutrino Experiment (DUNE). The detector technology relies on amplification of the ionisation charge in ... -
Upgrade of OSIRIS for Future Liquid Scintillator Studies
Loo, Kai K. (Sissa, 2024)Understanding the internal radioactive background contributions in its 20 kiloton liquid scintillator (LS) target is essential for the success of the JUNO reactor neutrino experiment. OSIRIS is a 20-tonne radiopurity ... -
Optimization of the JUNO liquid scintillator composition using a Daya Bay antineutrino detector
Daya Bay collaboration; JUNO collaboration (Elsevier, 2021)To maximize the light yield of the liquid scintillator (LS) for the Jiangmen Underground Neutrino Observatory (JUNO), a 20 t LS sample was produced in a pilot plant at Daya Bay. The optical properties of the new LS in ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.