Show simple item record

dc.contributor.authorMammen, Nisha
dc.contributor.authorMalola, Sami
dc.contributor.authorHonkala, Karoliina
dc.contributor.authorHäkkinen, Hannu
dc.date.accessioned2022-02-07T06:18:42Z
dc.date.available2022-02-07T06:18:42Z
dc.date.issued2022
dc.identifier.citationMammen, N., Malola, S., Honkala, K., & Häkkinen, H. (2022). Selective Acrolein Hydrogenation over Ligand-Protected Gold Clusters : A Venus Flytrap Mechanism. <i>ACS Catalysis</i>, <i>12</i>(4), 2365-2374. <a href="https://doi.org/10.1021/acscatal.1c04585" target="_blank">https://doi.org/10.1021/acscatal.1c04585</a>
dc.identifier.otherCONVID_104121915
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/79639
dc.description.abstractThe catalytic partial hydrogenation of α,β-unsaturated aldehydes is an ideal reaction to understand the selectivity between two different functional groups Here the two functional groups are C═C and C═O, and the hydrogenation of C═O is preferentially desired due to the importance of the issuing products, unsaturated alcohols, in fine-chemical industries. Using density functional theory calculations, we investigate the catalytic competency toward this reaction of a Au nanocluster in the presence of protecting ligands that offer higher stability and the possibility for the uniform distribution of size-selected clusters in the catalytic system. meta-Mercaptobenzoic-acid-protected-protected Au clusters exhibit special (bidentate) ligand–metal interactions: two weak interactions, O═C–OH···Au and Ph(π)···Au, in addition to the strong S–Au covalent bonds. We find that Ph(π)···Au interactions break (or open) to expose unprotected, low-coordinated Au sites on the cluster, which have a high propensity for trapping incoming reactant molecules. We study the partial hydrogenation of acrolein at these sites and find that the unsaturated alcohol, 1-propenol, is selectively favored over possible products. The opening of the π···Au interaction and the trapping of reactant molecules at Au sites are similar to a Venus flytrap mechanism where the flowers in the plant exhibit motion to actively trap its prey.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherAmerican Chemical Society (ACS)
dc.relation.ispartofseriesACS Catalysis
dc.rightsCC BY 4.0
dc.subject.othernanoklusterit
dc.subject.othermonolayer-protected clusters
dc.subject.otheracrolein reduction
dc.subject.othercatalysis
dc.subject.othergold
dc.subject.othernanoclusters
dc.subject.otherdensity functional theory
dc.titleSelective Acrolein Hydrogenation over Ligand-Protected Gold Clusters : A Venus Flytrap Mechanism
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202202071397
dc.contributor.laitosKemian laitosfi
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Chemistryen
dc.contributor.laitosDepartment of Physicsen
dc.contributor.oppiaineNanoscience Centerfi
dc.contributor.oppiaineFysikaalinen kemiafi
dc.contributor.oppiaineNanoscience Centeren
dc.contributor.oppiainePhysical Chemistryen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.description.reviewstatuspeerReviewed
dc.format.pagerange2365-2374
dc.relation.issn2155-5435
dc.relation.numberinseries4
dc.relation.volume12
dc.type.versionpublishedVersion
dc.rights.copyright© 2022 the Authors
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber307623
dc.relation.grantnumber317739
dc.relation.grantnumber319208
dc.relation.grantnumber332290
dc.subject.ysokulta
dc.subject.ysotiheysfunktionaaliteoria
dc.subject.ysopelkistys
dc.subject.ysokatalyysi
dc.subject.ysonanohiukkaset
dc.subject.ysohydraus
dc.subject.ysokatalyytit
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p19016
jyx.subject.urihttp://www.yso.fi/onto/yso/p28852
jyx.subject.urihttp://www.yso.fi/onto/yso/p9117
jyx.subject.urihttp://www.yso.fi/onto/yso/p8704
jyx.subject.urihttp://www.yso.fi/onto/yso/p23451
jyx.subject.urihttp://www.yso.fi/onto/yso/p38817
jyx.subject.urihttp://www.yso.fi/onto/yso/p15480
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1021/acscatal.1c04585
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
dc.relation.funderAcademy of Finlanden
dc.relation.funderAcademy of Finlanden
dc.relation.funderAcademy of Finlanden
dc.relation.funderAcademy of Finlanden
jyx.fundingprogramAkatemiaohjelma, SAfi
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundingprogramAkatemiaprofessorin tutkimuskulut, SAfi
jyx.fundingprogramTutkijatohtori, SAfi
jyx.fundingprogramAcademy Programme, AoFen
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramResearch costs of Academy Professor, AoFen
jyx.fundingprogramPostdoctoral Researcher, AoFen
jyx.fundinginformationThis work was supported by the Academy of Finland (grants 319208 and 317739 to H.H., 307623 to K.H., and 332290 to N.M.). The computations were performed at the CSC center in Finland and at the Barcelona Supercomputing Center in Spain (PRACE project no. 2018194723).


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0