dc.contributor.author | Kalliokoski, Tuomo | |
dc.contributor.editor | Huang, Yufei | |
dc.contributor.editor | Kurgan, Lukasz | |
dc.contributor.editor | Luo, Feng | |
dc.contributor.editor | Hu, Xiaohua | |
dc.contributor.editor | Chen, Yidong | |
dc.contributor.editor | Dougherty, Edward | |
dc.contributor.editor | Kloczkowski, Andrzej | |
dc.contributor.editor | Li, Yaohang | |
dc.date.accessioned | 2022-01-26T06:54:45Z | |
dc.date.available | 2022-01-26T06:54:45Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Kalliokoski, T. (2021). Requirement analysis for an artificial intelligence model for the diagnosis of the COVID-19 from chest X-ray data. In Y. Huang, L. Kurgan, F. Luo, X. Hu, Y. Chen, E. Dougherty, A. Kloczkowski, & Y. Li (Eds.), <i>IEEE BIBM 2021 : Proceedings of the 2021 IEEE International Conference on Bioinformatics and Biomedicine, December 9-12, 2021, Virtual Event</i> (pp. 3157-3164). IEEE. <a href="https://doi.org/10.1109/bibm52615.2021.9669525" target="_blank">https://doi.org/10.1109/bibm52615.2021.9669525</a> | |
dc.identifier.other | CONVID_103930024 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/79514 | |
dc.description.abstract | There are multiple papers published about different AI models for the COVID-19 diagnosis with promising results. Unfortunately according to the reviews many of the papers do not reach the level of sophistication needed for a clinically usable model. In this paper I go through multiple review papers, guidelines, and other relevant material in order to generate more comprehensive requirements for the future papers proposing a AI based diagnosis of the COVID-19 from chest X-ray data (CXR). Main findings are that a clinically usable AI needs to have an extremely good documentation, comprehensive statistical analysis of the possible biases and performance, and an explainability module. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | IEEE | |
dc.relation.ispartof | IEEE BIBM 2021 : Proceedings of the 2021 IEEE International Conference on Bioinformatics and Biomedicine, December 9-12, 2021, Virtual Event | |
dc.rights | In Copyright | |
dc.subject.other | COVID-19 | |
dc.subject.other | statistical analysis | |
dc.subject.other | data models | |
dc.subject.other | clinical diagnosis | |
dc.subject.other | artificial intelligence | |
dc.title | Requirement analysis for an artificial intelligence model for the diagnosis of the COVID-19 from chest X-ray data | |
dc.type | conferenceObject | |
dc.identifier.urn | URN:NBN:fi:jyu-202201261285 | |
dc.contributor.laitos | Informaatioteknologian tiedekunta | fi |
dc.contributor.laitos | Faculty of Information Technology | en |
dc.type.uri | http://purl.org/eprint/type/ConferencePaper | |
dc.relation.isbn | 978-1-6654-0126-5 | |
dc.type.coar | http://purl.org/coar/resource_type/c_5794 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 3157-3164 | |
dc.type.version | draft | |
dc.rights.copyright | © 2021 IEEE | |
dc.rights.accesslevel | openAccess | fi |
dc.relation.conference | IEEE International Conference on Bioinformatics and Biomedicine | |
dc.subject.yso | lääketiede | |
dc.subject.yso | COVID-19 | |
dc.subject.yso | tilastolliset mallit | |
dc.subject.yso | ennusteet | |
dc.subject.yso | tekoäly | |
dc.subject.yso | diagnostiikka | |
dc.subject.yso | tietomallit | |
dc.subject.yso | tilastomenetelmät | |
dc.subject.yso | tietojärjestelmät | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p469 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p38829 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p26278 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p3297 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p2616 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p416 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p25167 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p3127 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p3927 | |
dc.rights.url | http://rightsstatements.org/page/InC/1.0/?language=en | |
dc.relation.doi | 10.1109/bibm52615.2021.9669525 | |
dc.type.okm | A4 | |