Show simple item record

dc.contributor.authorVerma, Anand M.
dc.contributor.authorLaverdure, Laura
dc.contributor.authorMelander, Marko M.
dc.contributor.authorHonkala, Karoliina
dc.date.accessioned2021-12-27T06:50:56Z
dc.date.available2021-12-27T06:50:56Z
dc.date.issued2022
dc.identifier.citationVerma, A. M., Laverdure, L., Melander, M. M., & Honkala, K. (2022). Mechanistic Origins of the pH Dependency in Au-Catalyzed Glycerol Electro-oxidation : Insight from First-Principles Calculations. <i>ACS Catalysis</i>, <i>12</i>(1), 662-675. <a href="https://doi.org/10.1021/acscatal.1c03788" target="_blank">https://doi.org/10.1021/acscatal.1c03788</a>
dc.identifier.otherCONVID_103509532
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/79190
dc.description.abstractElectrocatalytic oxidation of glycerol (EOG) is an attractive approach to convert surplus glycerol to value-added products. Experiments have shown that EOG activity and selectivity depend not only on the electrocatalyst but also on the electrode potential, the pH, and the electrolyte. For broadly employed gold (Au) electrocatalysts, experiments have demonstrated high EOG activity under alkaline conditions with glyceric acid as a primary product, whereas under acidic and neutral conditions Au is almost inactive producing only small amounts of dihydroxyacetone. In the present computational work, we have performed an extensive mechanistic study to understand the pH and potential dependency of Au-catalyzed EOG. Our results show that activity and selectivity are controlled by the presence of surface-bound hydroxyl groups. Under alkaline conditions and close to the experimental onset potential, modest OH coverage is preferred according to our constant potential calculations. This indicates that both Au(OH)ads and Au can be active sites and they cooperatively facilitate the thermodynamically and kinetically feasible formation of glyceric acid thus explaining the experimentally observed high activity and selectivity. Under acidic conditions, hydroxide coverage is negligible and the dihydroxyacetone emerges as the favored product. Calculations predict slow reaction kinetics, however, which explains the low activity and selectivity toward dihydroxyacetone reported in experiments. Overall, our findings highlight that computational studies should explicitly account for pH and coverage effects under alkaline conditions for electrocatalytic oxidation reactions to reliably predict electrocatalytic behavior.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherAmerican Chemical Society (ACS)
dc.relation.ispartofseriesACS Catalysis
dc.rightsCC BY 4.0
dc.subject.otherglyseroli
dc.subject.otherelectro-oxidation
dc.subject.otherglycerol
dc.subject.otherelectrocatalyst
dc.subject.otherelectrolyte
dc.titleMechanistic Origins of the pH Dependency in Au-Catalyzed Glycerol Electro-oxidation : Insight from First-Principles Calculations
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202112276171
dc.contributor.laitosKemian laitosfi
dc.contributor.laitosDepartment of Chemistryen
dc.contributor.oppiaineResurssiviisausyhteisöfi
dc.contributor.oppiaineNanoscience Centerfi
dc.contributor.oppiaineFysikaalinen kemiafi
dc.contributor.oppiaineSchool of Resource Wisdomen
dc.contributor.oppiaineNanoscience Centeren
dc.contributor.oppiainePhysical Chemistryen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange662-675
dc.relation.issn2155-5435
dc.relation.numberinseries1
dc.relation.volume12
dc.type.versionpublishedVersion
dc.rights.copyright© 2021 the Authors
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber307853
dc.relation.grantnumber317739
dc.subject.ysoelektrolyytit
dc.subject.ysohapetus
dc.subject.ysoorgaaninen kemia
dc.subject.ysokatalyysi
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p8094
jyx.subject.urihttp://www.yso.fi/onto/yso/p9135
jyx.subject.urihttp://www.yso.fi/onto/yso/p11902
jyx.subject.urihttp://www.yso.fi/onto/yso/p8704
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1021/acscatal.1c03788
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramPostdoctoral Researcher, AoFen
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramTutkijatohtori, SAfi
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundinginformationThe work was supported by the Academy of Finland through projects 317739 (A.M.V., L.L., M.M.M., and K.H.) and 307853 (M.M.M.).
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0