Boundary rigidity for Randers metrics
Mönkkönen, K. (2022). Boundary rigidity for Randers metrics. Annales Fennici Mathematici, 47(1), 89-102. https://doi.org/10.54330/afm.112492
Published in
Annales Fennici MathematiciAuthors
Date
2022Discipline
Inversio-ongelmien huippuyksikköMatematiikkaCentre of Excellence in Inverse ProblemsMathematicsCopyright
© 2021 Annales Fennici Mathematici
Jos ei-reversiibeli Finsler-normi on summa reversiibelistä Finsler-normista ja suljetusta 1-muodosta, niin 1-muodon voi määrätä reunaetäisyysdatasta potentiaalikenttiä vaille yksikäsitteisesti. Osoitamme myös reunajäykkyystuloksen Randers-metriikoille, missä reversiibeli Finsler-normi on reunajäykän Riemannin metriikan indusoima. Lauseemme yleistävät Riemannilaisia reunajäykkyystuloksia joillekin ei-reversiibeleille Finsler-monistoille. Tarjoamme sovelluksen seismologiaan, missä seisminen aalto etenee liikkuvassa väliaineessa. If a non-reversible Finsler norm is the sum of a reversible Finsler norm and a closed 1-form, then one can uniquely recover the 1-form up to potential fields from the boundary distance data. We also show a boundary rigidity result for Randers metrics where the reversible Finsler norm is induced by a Riemannian metric which is boundary rigid. Our theorems generalize Riemannian boundary rigidity results to some non-reversible Finsler manifolds. We provide an application to seismology where the seismic wave propagates in a moving medium.
Publisher
Suomen matemaattinen yhdistys ryISSN Search the Publication Forum
2737-0690Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/102287702
Metadata
Show full item recordCollections
License
Related items
Showing items with similar title or keywords.
-
Partial Data Problems and Unique Continuation in Scalar and Vector Field Tomography
Ilmavirta, Joonas; Mönkkönen, Keijo (Birkhäuser, 2022)We prove that if P(D) is some constant coefficient partial differential operator and f is a scalar field such that P(D)f vanishes in a given open set, then the integrals of f over all lines intersecting that open set ... -
Refined instability estimates for some inverse problems
Kow, Pu-Zhao; Wang, Jenn-Nan (American Institute of Mathematical Sciences (AIMS), 2022)Many inverse problems are known to be ill-posed. The ill-posedness can be manifested by an instability estimate of exponential type, first derived by Mandache [29]. In this work, based on Mandache's idea, we refine the ... -
Calderón's problem for p-laplace type equations
Brander, Tommi (University of Jyväskylä, 2016)We investigate a generalization of Calderón’s problem of recovering the conductivity coefficient in a conductivity equation from boundary measurements. As a model equation we consider the p-conductivity equation div σ ... -
On some partial data Calderón type problems with mixed boundary conditions
Covi, Giovanni; Rüland, Angkana (Elsevier, 2021)In this article we consider the simultaneous recovery of bulk and boundary potentials in (degenerate) elliptic equations modelling (degenerate) conducting media with inaccessible boundaries. This connects local and nonlocal ... -
Optimality of Increasing Stability for an Inverse Boundary Value Problem
Kow, Pu-Zhao; Uhlmann, Gunther; Wang, Jenn-Nan (Society for Industrial & Applied Mathematics (SIAM), 2021)In this work we study the optimality of increasing stability of the inverse boundary value problem (IBVP) for the Schrödinger equation. The rigorous justification of increasing stability for the IBVP for the Schrödinger ...