Show simple item record

dc.contributor.authorRajala, Kai
dc.contributor.authorRasimus, Martti
dc.contributor.authorRomney, Matthew
dc.date.accessioned2021-11-26T07:16:33Z
dc.date.available2021-11-26T07:16:33Z
dc.date.issued2021
dc.identifier.citationRajala, K., Rasimus, M., & Romney, M. (2021). Uniformization with Infinitesimally Metric Measures. <i>Journal of Geometric Analysis</i>, <i>31</i>(11), 11445-11470. <a href="https://doi.org/10.1007/s12220-021-00689-y" target="_blank">https://doi.org/10.1007/s12220-021-00689-y</a>
dc.identifier.otherCONVID_89720384
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/78803
dc.description.abstractWe consider extensions of quasiconformal maps and the uniformization theorem to the setting of metric spaces X homeomorphic to R2R2. Given a measure μμ on such a space, we introduce μμ-quasiconformal maps f:X→R2f:X→R2, whose definition involves deforming lengths of curves by μμ. We show that if μμ is an infinitesimally metric measure, i.e., it satisfies an infinitesimal version of the metric doubling measure condition of David and Semmes, then such a μμ-quasiconformal map exists. We apply this result to give a characterization of the metric spaces admitting an infinitesimally quasisymmetric parametrization.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofseriesJournal of Geometric Analysis
dc.rightsCC BY 4.0
dc.subject.othermetric doubling measure
dc.subject.otherquasiconformal mapping
dc.subject.otherquasisymmetric mapping
dc.subject.otherconformal modulus
dc.titleUniformization with Infinitesimally Metric Measures
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202111265810
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineAnalyysin ja dynamiikan tutkimuksen huippuyksikköfi
dc.contributor.oppiaineMatematiikkafi
dc.contributor.oppiaineAnalysis and Dynamics Research (Centre of Excellence)en
dc.contributor.oppiaineMathematicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange11445-11470
dc.relation.issn1050-6926
dc.relation.numberinseries11
dc.relation.volume31
dc.type.versionpublishedVersion
dc.rights.copyright© The Author(s) 2021
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysomittateoria
dc.subject.ysometriset avaruudet
dc.subject.ysofunktioteoria
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p13386
jyx.subject.urihttp://www.yso.fi/onto/yso/p27753
jyx.subject.urihttp://www.yso.fi/onto/yso/p18494
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1007/s12220-021-00689-y
jyx.fundinginformationOpen access funding provided by University of Jyväskylä (JYU).
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0