Näytä suppeat kuvailutiedot

dc.contributor.authorVähäkainu, Petri
dc.contributor.authorLehto, Martti
dc.contributor.authorKariluoto, Antti
dc.contributor.editorJahankhani, Hamid
dc.contributor.editorJamal, Arshad
dc.contributor.editorLawson, Shaun
dc.date.accessioned2021-11-19T08:21:48Z
dc.date.available2021-11-19T08:21:48Z
dc.date.issued2021
dc.identifier.citationVähäkainu, P., Lehto, M., & Kariluoto, A. (2021). Countering Adversarial Inference Evasion Attacks Towards ML-Based Smart Lock in Cyber-Physical System Context. In H. Jahankhani, A. Jamal, & S. Lawson (Eds.), <i>Cybersecurity, Privacy and Freedom Protection in the Connected World : Proceedings of the 13th International Conference on Global Security, Safety and Sustainability, London, January 2021</i> (pp. 157-169). Springer. Advanced Sciences and Technologies for Security Applications. <a href="https://doi.org/10.1007/978-3-030-68534-8_11" target="_blank">https://doi.org/10.1007/978-3-030-68534-8_11</a>
dc.identifier.otherCONVID_89699010
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/78720
dc.description.abstractMachine Learning (ML) has been taking significant evolutionary steps and provided sophisticated means in developing novel and smart, up-to-date applications. However, the development has also brought new types of hazards into the daylight that can have even destructive consequences required to be addressed. Evasion attacks are among the most utilized attacks that can be generated in adversarial settings during the system operation. In assumption, ML environment is benign, but in reality, perpetrators may exploit vulnerabilities to conduct these gradient-free or gradient-based malicious adversarial inference attacks towards cyber-physical systems (CPS), such as smart buildings. Evasion attacks provide a utility for perpetrators to modify, for example, a testing dataset of a victim ML-model. In this article, we conduct a literature review concerning evasion attacks and countermeasures and discuss how these attacks can be utilized in order to deceive the, i.e., CPS smart lock system’s ML-classifier to gain access to the smart building.en
dc.format.extent469
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofCybersecurity, Privacy and Freedom Protection in the Connected World : Proceedings of the 13th International Conference on Global Security, Safety and Sustainability, London, January 2021
dc.relation.ispartofseriesAdvanced Sciences and Technologies for Security Applications
dc.rightsIn Copyright
dc.subject.otheradversarial machine learning
dc.subject.otherdefensive mechanisms
dc.subject.otherevasion attacks
dc.subject.othercyber-physical system
dc.titleCountering Adversarial Inference Evasion Attacks Towards ML-Based Smart Lock in Cyber-Physical System Context
dc.typeconferenceObject
dc.identifier.urnURN:NBN:fi:jyu-202111195731
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.type.urihttp://purl.org/eprint/type/ConferencePaper
dc.relation.isbn978-3-030-68533-1
dc.type.coarhttp://purl.org/coar/resource_type/c_5794
dc.description.reviewstatuspeerReviewed
dc.format.pagerange157-169
dc.relation.issn1613-5113
dc.type.versionacceptedVersion
dc.rights.copyright© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
dc.rights.accesslevelopenAccessfi
dc.relation.conferenceInternational Conference on Global Security, Safety and Sustainability
dc.subject.ysokoneoppiminen
dc.subject.ysokyberturvallisuus
dc.subject.ysoverkkohyökkäykset
dc.subject.ysoälytekniikka
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
jyx.subject.urihttp://www.yso.fi/onto/yso/p26189
jyx.subject.urihttp://www.yso.fi/onto/yso/p27466
jyx.subject.urihttp://www.yso.fi/onto/yso/p27260
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1007/978-3-030-68534-8_11
dc.type.okmA4


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright