Näytä suppeat kuvailutiedot

dc.contributor.authorKonrad, Nele
dc.contributor.authorHoretski, Matvey
dc.contributor.authorSihtmäe, Mariliis
dc.contributor.authorTruong, Khai-Nghi
dc.contributor.authorOsadchuk, Irina
dc.contributor.authorBurankova, Tatsiana
dc.contributor.authorKielmann, Marc
dc.contributor.authorAdamson, Jasper
dc.contributor.authorKahru, Anne
dc.contributor.authorRissanen, Kari
dc.contributor.authorSenge, Mathias O.
dc.contributor.authorBorovkov, Victor
dc.contributor.authorAav, Riina
dc.contributor.authorKananovich, Dzmitry
dc.date.accessioned2021-11-11T09:54:35Z
dc.date.available2021-11-11T09:54:35Z
dc.date.issued2021
dc.identifier.citationKonrad, N., Horetski, M., Sihtmäe, M., Truong, K.-N., Osadchuk, I., Burankova, T., Kielmann, M., Adamson, J., Kahru, A., Rissanen, K., Senge, M. O., Borovkov, V., Aav, R., & Kananovich, D. (2021). Thiourea Organocatalysts as Emerging Chiral Pollutants : En Route to Porphyrin-Based (Chir)Optical Sensing. <i>Chemosensors</i>, <i>9</i>(10), Article 278. <a href="https://doi.org/10.3390/chemosensors9100278" target="_blank">https://doi.org/10.3390/chemosensors9100278</a>
dc.identifier.otherCONVID_101862001
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/78613
dc.description.abstractEnvironmental pollution with chiral organic compounds is an emerging problem requiring innovative sensing methods. Amino-functionalized thioureas, such as 2-(dimethylamino)cyclohexyl-(3,5-bis(trifluoromethyl)phenyl)thiourea (Takemoto’s catalyst), are widely used organocatalysts with virtually unknown environmental safety data. Ecotoxicity studies based on the Vibrio fischeri luminescence inhibition test reveal significant toxicity of Takemoto’s catalyst (EC50 = 7.9 mg/L) and its NH2-substituted analog (EC50 = 7.2–7.4 mg/L). The observed toxic effect was pronounced by the influence of the trifluoromethyl moiety. En route to the porphyrin-based chemosensing of Takemoto-type thioureas, their supramolecular binding to a series of zinc porphyrins was studied with UV-Vis and circular dichroism (CD) spectroscopy, computational analysis and single crystal X-ray diffraction. The association constant values generally increased with the increasing electron-withdrawing properties of the porphyrins and electron-donating ability of the thioureas, a result of the predominant Zn⋯N cation–dipole (Lewis acid–base) interaction. The binding event induced a CD signal in the Soret band region of the porphyrin hosts—a crucial property for chirality sensing of Takemoto-type thioureas.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherMDPI AG
dc.relation.ispartofseriesChemosensors
dc.rightsCC BY 4.0
dc.subject.otherporphyrin
dc.subject.otherthiourea
dc.subject.otherchiral amine
dc.subject.otherorganocatalyst
dc.subject.otherTakemoto’s catalyst
dc.subject.otherhost–guest binding
dc.subject.otherchirality
dc.subject.othersupramolecular chemistry
dc.subject.othercircular dichroism
dc.subject.othertoxicity
dc.subject.otherchiral pollutants
dc.subject.otherVibrio fischeri
dc.titleThiourea Organocatalysts as Emerging Chiral Pollutants : En Route to Porphyrin-Based (Chir)Optical Sensing
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202111115631
dc.contributor.laitosKemian laitosfi
dc.contributor.laitosDepartment of Chemistryen
dc.contributor.oppiaineOrgaaninen kemiafi
dc.contributor.oppiaineOrganic Chemistryen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn2227-9040
dc.relation.numberinseries10
dc.relation.volume9
dc.type.versionpublishedVersion
dc.rights.copyright© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber828779
dc.relation.grantnumber828779
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/828779/EU//INITIO
dc.subject.ysomonitorointi
dc.subject.ysorikkiyhdisteet
dc.subject.ysobakteerit
dc.subject.ysokatalyytit
dc.subject.ysoorgaaniset yhdisteet
dc.subject.ysosupramolekulaarinen kemia
dc.subject.ysoekotoksikologia
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p3628
jyx.subject.urihttp://www.yso.fi/onto/yso/p5731
jyx.subject.urihttp://www.yso.fi/onto/yso/p1749
jyx.subject.urihttp://www.yso.fi/onto/yso/p15480
jyx.subject.urihttp://www.yso.fi/onto/yso/p3841
jyx.subject.urihttp://www.yso.fi/onto/yso/p37759
jyx.subject.urihttp://www.yso.fi/onto/yso/p19671
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.3390/chemosensors9100278
dc.relation.funderEuropean Commissionen
dc.relation.funderEuroopan komissiofi
jyx.fundingprogramFET Future and Emerging Technologies, H2020en
jyx.fundingprogramFET Future and Emerging Technologies, H2020fi
jyx.fundinginformationThis work was supported by the Estonian Research Council grant PUTJD749 (for I.O.) PRG399, (for N.K., R.A., V.B.), PSG400 (for J.A), PRG749 (for M.S.), European Regional Development Fund grants NAMUR+ 2014-2020.4.01.16-0123 (for M.S. and A.K) and TK134 (for A.K., J.A.) and the European Union’s H2020-FETOPEN grant 828779 (INITIO) (for N.K., K.-N.T., K.R., M.K., M.O.S., D.K., R.A., V.B.). M.H. is grateful to the Dora Plus program for financial support of his research stay at Tallinn University of Technology.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0