Inattention and Uncertainty in the Predictive Brain
Kujala, T., & Lappi, O. (2021). Inattention and Uncertainty in the Predictive Brain. Frontiers in Neuroergonomics, 2, Article 718699. https://doi.org/10.3389/fnrgo.2021.718699
Julkaistu sarjassa
Frontiers in NeuroergonomicsPäivämäärä
2021Oppiaine
KognitiotiedeKoulutusteknologia ja kognitiotiedeCognitive ScienceLearning and Cognitive SciencesTekijänoikeudet
© 2021 the Authors
Negative effects of inattention on task performance can be seen in many contexts of society and human behavior, such as traffic, work, and sports. In traffic, inattention is one of the most frequently cited causal factors in accidents. In order to identify inattention and mitigate its negative effects, there is a need for quantifying attentional demands of dynamic tasks, with a credible basis in cognitive modeling and neuroscience. Recent developments in cognitive science have led to theories of cognition suggesting that brains are an advanced prediction engine. The function of this prediction engine is to support perception and action by continuously matching incoming sensory input with top-down predictions of the input, generated by hierarchical models of the statistical regularities and causal relationships in the world. Based on the capacity of this predictive processing framework to explain various mental phenomena and neural data, we suggest it also provides a plausible theoretical and neural basis for modeling attentional demand and attentional capacity “in the wild” in terms of uncertainty and prediction error. We outline a predictive processing approach to the study of attentional demand and inattention in driving, based on neurologically-inspired theories of uncertainty processing and experimental research combining brain imaging, visual occlusion and computational modeling. A proper understanding of uncertainty processing would enable comparison of driver's uncertainty to a normative level of appropriate uncertainty, and thereby improve definition and detection of inattentive driving. This is the necessary first step toward applications such as attention monitoring systems for conventional and semi-automated driving.
...
Julkaisija
Frontiers Media SAISSN Hae Julkaisufoorumista
2673-6195Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/101262157
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiahanke, SALisätietoja rahoituksesta
The research was partly funded by Academy of Finland (Sense of Space/334192 and Appropriate Uncertainty in Manual and Automated Driving/343259).Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Quantifying attentional demand of a lane-keeping task as the minimum required information in predictive processing
Kujala, Tuomo (Université Gustave Eiffel; SAFER Vehicle and Traffic Safety Centre at Chalmers; UNSW Sydney, 2021) -
Visual occlusion as tool to assess attentional demand and spare capacity
Kircher, Katja; Ahlström, Christer; Kujala, Tuomo; Liu, Zhuofan (Université Gustave Eiffel; SAFER Vehicle and Traffic Safety Centre at Chalmers; UNSW Sydney, 2021) -
Visuaalisen tarkkaavaisuuden jakaminen salibandyssa
Häkkänen, Matias (2024)Tässä pro gradu -tutkielmassa selvitetään, mikä yhteys salibandyn pallollisen puolustajan palloon kohdistuvien katseiden kestolla ja niiden määrällä on pelaajan pallonhallintatilannetta seuraavaan suoritukseen. Katseen ... -
Hand‐related action words impair action anticipation in expert table tennis players : Behavioral and neural evidence
Wang, Yingying; Ji, Qingchun; Fu, Rao; Zhang, Guanghui; Lu, Yingzhi; Zhou, Chenglin (Wiley, 2022)Athletes extract kinematic information to anticipate action outcomes. Here, we examined the influence of linguistic information (experiment 1, 2) and its underlying neural correlates (experiment 2) on anticipatory judgment. ... -
Refining distraction potential testing guidelines by considering differences in glancing behavior
Grahn, Hilkka; Taipalus, Toni (Elsevier, 2021)Driver distraction is a recognized cause of traffic accidents. Although the well-known guidelines for measuring distraction of secondary in-car tasks were published by the United States National Highway Traffic Safety ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.