Näytä suppeat kuvailutiedot

dc.contributor.authorYou, Li
dc.contributor.authorHuang, Yufei
dc.contributor.authorZhang, Di
dc.contributor.authorChang, Zheng
dc.contributor.authorWang, Wenjin
dc.contributor.authorGao, Xiqi
dc.date.accessioned2021-09-23T08:43:23Z
dc.date.available2021-09-23T08:43:23Z
dc.date.issued2021
dc.identifier.citationYou, L., Huang, Y., Zhang, D., Chang, Z., Wang, W., & Gao, X. (2021). Energy Efficiency Optimization for Multi-cell Massive MIMO : Centralized and Distributed Power Allocation Algorithms. <i>IEEE Transactions on Communications</i>, <i>69</i>(8), 5228-5242. <a href="https://doi.org/10.1109/TCOMM.2021.3081451" target="_blank">https://doi.org/10.1109/TCOMM.2021.3081451</a>
dc.identifier.otherCONVID_89734633
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/77893
dc.description.abstractThis paper investigates the energy efficiency (EE) optimization in downlink multi-cell massive multiple-input multiple-output (MIMO). In our research, the statistical channel state information (CSI) is exploited to reduce the signaling overhead. To maximize the minimum EE among the neighbouring cells, we design the transmit covariance matrices for each base station (BS). Specifically, optimization schemes for this max-min EE problem are developed, in the centralized and distributed ways, respectively. To obtain the transmit covariance matrices, we first find out the closed-form optimal transmit eigenmatrices for the BS in each cell, and convert the original transmit covariance matrices designing problem into a power allocation one. Then, to lower the computational complexity, we utilize an asymptotic approximation expression for the problem objective. Moreover, for the power allocation design, we adopt the minorization maximization method to address the non-convexity of the ergodic rate, and use Dinkelbach’s transform to convert the max-min fractional problem into a series of convex optimization subproblems. To tackle the transformed subproblems, we propose a centralized iterative water-filling scheme. For reducing the backhaul burden, we further develop a distributed algorithm for the power allocation problem, which requires limited inter-cell information sharing. Finally, the performance of the proposed algorithms are demonstrated by extensive numerical results.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.ispartofseriesIEEE Transactions on Communications
dc.rightsIn Copyright
dc.subject.otherenergy efficiency
dc.subject.otherstatistical CSI
dc.subject.othermulti-cell MIMO
dc.subject.othermax-min fairness
dc.subject.otherdistributed processing
dc.titleEnergy Efficiency Optimization for Multi-cell Massive MIMO : Centralized and Distributed Power Allocation Algorithms
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202109234965
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange5228-5242
dc.relation.issn0090-6778
dc.relation.numberinseries8
dc.relation.volume69
dc.type.versionacceptedVersion
dc.rights.copyright© 2021, IEEE
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysooptimointi
dc.subject.ysoalgoritmit
dc.subject.ysoenergiatehokkuus
dc.subject.ysomallintaminen
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p13477
jyx.subject.urihttp://www.yso.fi/onto/yso/p14524
jyx.subject.urihttp://www.yso.fi/onto/yso/p8328
jyx.subject.urihttp://www.yso.fi/onto/yso/p3533
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1109/TCOMM.2021.3081451
jyx.fundinginformationThis work was supported in part by the National Key R&D Program of China under Grant 2018YFB1801103; in part by the National Natural Science Foundation of China under Grants 61801114, 61631018, and 61761136016; in part by the Jiangsu Province Basic Research Project under Grant BK20192002; and in part by the Fundamental Research Funds for the Central Universities. The work of D. Zhang is supported by the National Science Foundation of China (NSFC) under grant 62001423; Henan Provincial Key Research, Development and Promotion Project under grant 212102210175; Henan Provincial Key Scientific Research Project for Colleges and Universities under grant 21A510011. The work of Z. Chang is partly supported by NSFC No. 62071105.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright