dc.contributor.author | Carbotti, Alessandro | |
dc.contributor.author | Don, Sebastiano | |
dc.contributor.author | Pallara, Diego | |
dc.contributor.author | Pinamonti, Andrea | |
dc.date.accessioned | 2021-09-01T07:04:32Z | |
dc.date.available | 2021-09-01T07:04:32Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Carbotti, A., Don, S., Pallara, D., & Pinamonti, A. (2021). Local minimizers and gamma-convergence for nonlocal perimeters in Carnot groups. <i>ESAIM : Control, Optimisation and Calculus of Variations</i>, <i>27</i>(Supplement), Article S11. <a href="https://doi.org/10.1051/cocv/2020055" target="_blank">https://doi.org/10.1051/cocv/2020055</a> | |
dc.identifier.other | CONVID_51962967 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/77625 | |
dc.description.abstract | We prove the local minimality of halfspaces in Carnot groups for a class of nonlocal functionals usually addressed as nonlocal perimeters. Moreover, in a class of Carnot groups in which the De Giorgi’s rectifiability theorem holds, we provide a lower bound for the Γ-liminf of the rescaled energy in terms of the horizontal perimeter. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | EDP Sciences | |
dc.relation.ispartofseries | ESAIM : Control, Optimisation and Calculus of Variations | |
dc.rights | In Copyright | |
dc.subject.other | Carnot groups | |
dc.subject.other | calibrations | |
dc.subject.other | nonlocal perimeters | |
dc.subject.other | Γ-convergence | |
dc.subject.other | sets of finite perimeter | |
dc.subject.other | rectifiability | |
dc.title | Local minimizers and gamma-convergence for nonlocal perimeters in Carnot groups | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-202109014750 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.oppiaine | Matematiikka | fi |
dc.contributor.oppiaine | Mathematics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 1292-8119 | |
dc.relation.numberinseries | Supplement | |
dc.relation.volume | 27 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © EDP Sciences, SMAI 2021 | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.relation.grantnumber | 288501 | |
dc.relation.grantnumber | 713998 | |
dc.relation.grantnumber | 713998 | |
dc.relation.grantnumber | 322898 | |
dc.relation.projectid | info:eu-repo/grantAgreement/EC/H2020/713998/EU//GeoMeG | |
dc.subject.yso | differentiaaligeometria | |
dc.subject.yso | variaatiolaskenta | |
dc.subject.yso | matemaattinen optimointi | |
dc.subject.yso | ryhmäteoria | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p16682 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p11197 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p17635 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p12497 | |
dc.rights.url | http://rightsstatements.org/page/InC/1.0/?language=en | |
dc.relation.doi | 10.1051/cocv/2020055 | |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | European Commission | en |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Euroopan komissio | fi |
dc.relation.funder | Suomen Akatemia | fi |
jyx.fundingprogram | Academy Research Fellow, AoF | en |
jyx.fundingprogram | ERC Starting Grant | en |
jyx.fundingprogram | Academy Project, AoF | en |
jyx.fundingprogram | Akatemiatutkija, SA | fi |
jyx.fundingprogram | ERC Starting Grant | fi |
jyx.fundingprogram | Akatemiahanke, SA | fi |
jyx.fundinginformation | S.D. has been partially supported by the Academy of Finland (grant 288501 “Geometry of subRiemannian groups” and grant 322898 “Sub-Riemannian geometry via metric-geometry and Lie-group theory”) and by the European Research Council (ERC Starting Grant 713998 GeoMeG “Geometry of metric groups”). D.P. is member of G.N.A.M.P.A. of the Italian Istituto Nazionale di Alta Matematica (INdAM) and has been partially supported by the PRIN 2015 MIUR project 2015233N54. A.P. is member of G.N.A.M.P.A. of the Italian Istituto Nazionale di Alta Matematica (INdAM). | |
dc.type.okm | A1 | |