Show simple item record

dc.contributor.authorEtula, Jarkko
dc.contributor.authorWester, Niklas
dc.contributor.authorLiljeström, Touko
dc.contributor.authorSainio, Sami
dc.contributor.authorPalomäki, Tommi
dc.contributor.authorArstila, Kai
dc.contributor.authorSajavaara, Timo
dc.contributor.authorKoskinen, Jari
dc.contributor.authorCaro, Miguel A.
dc.contributor.authorLaurila, Tomi
dc.date.accessioned2021-08-24T07:43:08Z
dc.date.available2021-08-24T07:43:08Z
dc.date.issued2021
dc.identifier.citationEtula, J., Wester, N., Liljeström, T., Sainio, S., Palomäki, T., Arstila, K., Sajavaara, T., Koskinen, J., Caro, M. A., & Laurila, T. (2021). What Determines the Electrochemical Properties of Nitrogenated Amorphous Carbon Thin Films?. <i>Chemistry of Materials</i>, <i>33</i>(17), 6813-6824. <a href="https://doi.org/10.1021/acs.chemmater.1c01519" target="_blank">https://doi.org/10.1021/acs.chemmater.1c01519</a>
dc.identifier.otherCONVID_100253242
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/77472
dc.description.abstractLinking structural and compositional features with the observed electrochemical performance is often ambiguous and sensitive to known and unknown impurities. Here an extensive experimental investigation augmented by computational analyses is linked to the electrochemical characterization of in situ nitrogen-doped tetrahedral amorphous carbon thin films (ta-C:N). Raman spectroscopy combined with X-ray reflectivity shows nitrogen disrupting the sp3 C–C structure of the reference ta-C, supported by the observations of graphitic nitrogen substitution in X-ray absorption spectroscopy. The surface roughness also increases, as observed in atomic force microscopy and atomic-level computational analyses. These changes are linked to significant increases in the hydrogen and oxygen content of the films by utilizing time-of-flight elastic recoil detection analysis. The conductivity of the films increases as a function of the nitrogen content, which is seen as a facile reversible outer-sphere redox reaction on ta-C:N electrodes. However, for the surface-sensitive inner-sphere redox (ISR) analytes, it is shown that the electrochemical response instead follows the oxygen and hydrogen content. We argue that the passivation of the required surface adsorption sites by hydrogen decreases the rates of all of the chemically different ISR probes investigated on nitrogenated surfaces significantly below that of the nitrogen-free reference sample. This hypothesis can be used to readily rationalize many of the contradictory electrochemical results reported in the literature.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherAmerican Chemical Society (ACS)
dc.relation.ispartofseriesChemistry of Materials
dc.rightsCC BY 4.0
dc.titleWhat Determines the Electrochemical Properties of Nitrogenated Amorphous Carbon Thin Films?
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202108244637
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.contributor.oppiaineFysiikkafi
dc.contributor.oppiaineYdin- ja kiihdytinfysiikan huippuyksikköfi
dc.contributor.oppiainePhysicsen
dc.contributor.oppiaineCentre of Excellence in Nuclear and Accelerator Based Physicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.description.reviewstatuspeerReviewed
dc.format.pagerange6813-6824
dc.relation.issn0897-4756
dc.relation.numberinseries17
dc.relation.volume33
dc.type.versionpublishedVersion
dc.rights.copyright© XXXX The Authors. Published by American Chemical Society
dc.rights.accesslevelopenAccessfi
dc.subject.ysosähkökemia
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p8093
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1021/acs.chemmater.1c01519
jyx.fundinginformationWe acknowledge the provision of facilities by RawMatters Finland Infrastructure (RAMI, no. 292884), Aalto University Bioeconomy, and OtaNano - Nanomicroscopy Center (AaltoNMC). Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under contract no. DE-AC02-76SF00515. We acknowledge CSC − IT Center for Science, Finland, for computational resources. S.S. acknowledges funding from the Walter Ahlström Foundation. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 841621 and the Business Finland FEPOD 2117731 project. M.A.C. acknowledges funding from the Academy of Finland under project number 30488.


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0