Trace Operators and Classification Criteria for Regular Trees
The thesis deals with existence of traces of Sobolev functions defined on regular trees.
The existence is shown to be strongly related to the isoperimetric profile of the tree under
natural assumptions. Furthermore, we give classification criteria for regular trees.
Publisher
Jyväskylän yliopistoISBN
978-951-39-8795-4ISSN Search the Publication Forum
2489-9003Contains publications
- Artikkeli I: Koskela, P., Nguyen, K. N., & Wang, Z. (2021). Trace and Density Results on Regular Trees. Potential Analysis, Early online. DOI: 10.1007/s11118-021-09907-2
- Artikkeli II: Koskela, P., Nguyen, K. N., & Wang, Z. (2021). Trace Operators on Regular Trees. Analysis and Geometry in Metric Spaces, 8(1), 396-409. DOI: 10.1515/agms-2020-0117
- Artikkeli III: Nguyen, K. N., & Wang, Z. (2020). Admissibility versus Ap-Conditions on Regular Trees. Analysis and Geometry in Metric Spaces, 8(1), 92-105. DOI: 10.1515/agms-2020-0110
- Artikkeli IV: Nguyen, Khanh. Classification criteria for regular trees. Accepted by Annales Academiæ Scientiarum Fennicæ. Mathematica.
Metadata
Show full item recordCollections
- JYU Dissertations [870]
- Väitöskirjat [3599]
License
Related items
Showing items with similar title or keywords.
-
The Impact of Regularization on Convolutional Neural Networks
Zeeshan, Khaula (2018)Syvä oppiminen (engl. deep learning) on viime aikoina tullut suosituimmaksi koneoppimisen menetelmäksi. Konvoluutio(hermo)verkko on yksi suosituimmista syvän oppimisen arkkitehtuureista monimutkaisiin ongelmiin kuten kuvien ... -
Criteria for the evaluation of requirements management tools supporting distributed software product line engineering and management
Santillán, María Florencia (2015)The development of software product lines (SPL) by geographically distributed teams increases the complexity of requirements management (RM) related tasks, making the support of a RM tool necessary. However, the selection ... -
Tree species classification of drone hyperspectral and RGB imagery with deep learning convolutional neural networks
Nezami, Somayeh; Khoramshahi, Ehsan; Nevalainen, Olli; Pölönen, Ilkka; Honkavaara, Eija (MDPI AG, 2020)Interest in drone solutions in forestry applications is growing. Using drones, datasets can be captured flexibly and at high spatial and temporal resolutions when needed. In forestry applications, fundamental tasks include ... -
The Truth is Out There : Focusing on Smaller to Guess Bigger in Image Classification
Terziyan, Vagan; Kaikova, Olena; Malyk, Diana; Branytskyi, Vladyslav (Elsevier, 2023)In Artificial Intelligence (AI) in general and in Machine Learning (ML) in particular, which are important and integral components of modern Industry 4.0, we often deal with uncertainty, e.g., lack of complete information ... -
Description of movement sensor dataset for dog behavior classification
Vehkaoja, Antti; Somppi, Sanni; Törnqvist, Heini; Valldeoriola Cardó, Anna; Kumpulainen, Pekka; Väätäjä, Heli; Majaranta, Päivi; Surakka, Veikko; Kujala, Miiamaaria V.; Vainio, Outi (Elsevier, 2022)Movement sensor data from seven static and dynamic dog behaviors (sitting, standing, lying down, trotting, walking, playing, and (treat) searching i.e. sniffing) was collected from 45 middle to large sized dogs with six ...