Näytä suppeat kuvailutiedot

dc.contributor.authorKumpulainen, Pekka
dc.contributor.authorCardó, Anna Valldeoriola
dc.contributor.authorSomppi, Sanni
dc.contributor.authorTörnqvist, Heini
dc.contributor.authorVäätäjä, Heli
dc.contributor.authorMajaranta, Päivi
dc.contributor.authorGizatdinova, Yulia
dc.contributor.authorHoog, Antink Christoph
dc.contributor.authorSurakka, Veikko
dc.contributor.authorKujala, Miiamaaria V.
dc.contributor.authorVainio, Outi
dc.contributor.authorVehkaoja, Antti
dc.date.accessioned2021-07-12T07:37:50Z
dc.date.available2021-07-12T07:37:50Z
dc.date.issued2021
dc.identifier.citationKumpulainen, P., Cardó, A. V., Somppi, S., Törnqvist, H., Väätäjä, H., Majaranta, P., Gizatdinova, Y., Hoog, A. C., Surakka, V., Kujala, M. V., Vainio, O., & Vehkaoja, A. (2021). Dog behaviour classification with movement sensors placed on the harness and the collar. <i>Applied Animal Behaviour Science</i>, <i>241</i>, Article 105393. <a href="https://doi.org/10.1016/j.applanim.2021.105393" target="_blank">https://doi.org/10.1016/j.applanim.2021.105393</a>
dc.identifier.otherCONVID_98969765
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/77085
dc.description.abstractDog owners’ understanding of the daily behaviour of their dogs may be enhanced by movement measurements that can detect repeatable dog behaviour, such as levels of daily activity and rest as well as their changes. The aim of this study was to evaluate the performance of supervised machine learning methods utilising accelerometer and gyroscope data provided by wearable movement sensors in classification of seven typical dog activities in a semi-controlled test situation. Forty-five middle to large sized dogs participated in the study. Two sensor devices were attached to each dog, one on the back of the dog in a harness and one on the neck collar. Altogether 54 features were extracted from the acceleration and gyroscope signals divided in two-second segments. The performance of four classifiers were compared using features derived from both sensor modalities. and from the acceleration data only. The results were promising; the movement sensor at the back yielded up to 91 % accuracy in classifying the dog activities and the sensor placed at the collar yielded 75 % accuracy at best. Including the gyroscope features improved the classification accuracy by 0.7–2.6 %, depending on the classifier and the sensor location. The most distinct activity was sniffing, whereas the static postures (lying on chest, sitting and standing) were the most challenging behaviours to classify, especially from the data of the neck collar sensor.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier BV
dc.relation.ispartofseriesApplied Animal Behaviour Science
dc.rightsCC BY 4.0
dc.subject.otherpuettava teknologia
dc.subject.otherdogs
dc.subject.othercanine
dc.subject.otherbehaviour classification
dc.subject.otheractigraphy
dc.subject.otheraccelerometry
dc.subject.otheractivity monitoring
dc.subject.otherwearable technology
dc.titleDog behaviour classification with movement sensors placed on the harness and the collar
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202107124270
dc.contributor.laitosPsykologian laitosfi
dc.contributor.laitosDepartment of Psychologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn0168-1591
dc.relation.volume241
dc.type.versionpublishedVersion
dc.rights.copyright© 2021 The Authors. Published by Elsevier B.V.
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysokoulutus
dc.subject.ysoaktigrafia
dc.subject.ysokoira
dc.subject.ysokoneoppiminen
dc.subject.ysoliikkeentunnistus
dc.subject.ysoeläimet
dc.subject.ysoaktiivisuus
dc.subject.ysoeläinten käyttäytyminen
dc.subject.ysokäyttäytyminen
dc.subject.ysomittarit (mittaus)
dc.subject.ysoälyvaatteet
dc.subject.ysoeläinten koulutus
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p84
jyx.subject.urihttp://www.yso.fi/onto/yso/p38376
jyx.subject.urihttp://www.yso.fi/onto/yso/p5319
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
jyx.subject.urihttp://www.yso.fi/onto/yso/p24599
jyx.subject.urihttp://www.yso.fi/onto/yso/p2023
jyx.subject.urihttp://www.yso.fi/onto/yso/p15704
jyx.subject.urihttp://www.yso.fi/onto/yso/p18481
jyx.subject.urihttp://www.yso.fi/onto/yso/p3625
jyx.subject.urihttp://www.yso.fi/onto/yso/p21210
jyx.subject.urihttp://www.yso.fi/onto/yso/p22555
jyx.subject.urihttp://www.yso.fi/onto/yso/p28336
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.datasethttp://dx.doi.org/10.17632/vxhx934tbn.1
dc.relation.doi10.1016/j.applanim.2021.105393
jyx.fundinginformationThis research was funded by Business Finland, a Finnish national research funding organization, grant numbers 1665/31/2016, 1894/31/2016, 7244/31/2016 in the context of “Buddy and the Smiths 2.0” project.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0