Machine learning based ISA detection for short shellcodes
Hyökkäyskoodi (engl. shellcode) on usein käytössä kyberrikollisuudessa, kun tarkoituksena on tunkeutua erilaisiin tietoteknisiin järjestelmiin. Koodi-injektio on yhä toimiva hyökkäysmenetelmä, sillä ohjelmistohaavoittuvuudet eivät ole kadonneet mihinkään. Tyypillisesti tällainen koodi kirjoitetaan konekielellä. Perinteisesti näitä hyökkäyskoodeja on analysoitu takaisinmallintamalla, mutta menetelmän vaikeuden takia on ryhdytty turvautumaan koneoppimiseen, jotta prosessista tulisi helpompi. Tutkielmassa tehdyn kirjallisuuskatsauksen avulla hankittiin tietoa hyökkäyskoodeista, tekoälystä ja koneoppimisesta. Tässä tutkielmassa selvitettiin, kuinka tarkasti viimeisintä tekniikkaa edustava koneoppimispohjainen sovellus havaitsee hyökkäyskoodin käskykanta-arkkitehtuurin. Tutkimus oli kokeellinen ja se suoritettiin virtuaaliympäristössä muun muassa turvallisuuden takia. Työssä rakennettiin reaalimaailmaan perustuva hyökkäyskooditietokanta, joka sisältää noin 20000 hyökkäyskooditiedostoa 15 eri arkkitehtuurille. Koodit hankittiin kolmesta eri lähteestä, jotka ovat Exploit Database, Shell-Storm ja MSFvenom. Näistä koodeista koostettiin pienempi joukko testaamista varten. Tutkimuksen rajoituksia pohdittaessa todettiin, että testitietokanta saattaa olla liian suppea, mutta sen avulla kuitenkin pystyttiin kartoittamaan sovelluksen tämänhetkinen toiminta. Testeissä selvisi, että sovellus ei tällä hetkellä kykene havaitsemaan hyökkäyskoodin käskykanta-arkkitehtuuria riittävällä tarkkuudella. Kahta eri skannausasetusta testattiin, joista molemmat saavuttivat noin 30% tarkkuuden. Sovelluksen luokittelijat testattiin myös, niistä satunnaismetsä toimi parhaiten.
...
Shellcodes are often used by cybercriminals in order to breach computer systems. Code injection is still a viable attack method because software vulnerabilities have not ceased to exist. Typically these codes are written in assembly language. Traditional method of analysis has been reverse engineering, but as it can be difficult and time-consuming, machine learning has been utilized to make the process easier. A literature review was performed to gain an understanding about shellcodes, artificial intelligence and machine learning. This thesis explores how accurately a state-of-the-art machine learning ISA detection tool can detect the instruction set architecture from short shellcodes. The used method was experimental research, and the research was conducted in a virtual environment mainly for safety reasons. Using three different sources which were Exploit Database, Shell-Storm and MSFvenom, approximately 20000 shellcodes for 15 different architectures were collected. Using these files, a smaller set of shellcodes was created in order to test the performance of a machine learning based ISA detection tool. When limitations were identified, it was noted that the test set may not be diverse or large enough. Nevertheless, with this set it was possible to gain an understanding on how the program currently handles shellcodes. The study found that with the current training, the program is not able to reliably detect ISA from the shellcodes of the database. Two different detection options were used and they both achieved the accuracy of approximately 30%. The different classifiers were tested as well and random forest had the best performance.
...
Asiasanat
Metadata
Näytä kaikki kuvailutiedotKokoelmat
- Pro gradu -tutkielmat [29740]
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Strategic cyber threat intelligence : Building the situational picture with emerging technologies
Voutilainen, Janne; Kari, Martti (Academic Conferences International, 2020)In 2019, e-criminals adopted new tactics to demand enormous ransoms from large organizations by using ransomware, a phenomenon known as “big game hunting.” Big game hunting is an excellent example of a sophisticated and ... -
On Attacking Future 5G Networks with Adversarial Examples : Survey
Zolotukhin, Mikhail; Zhang, Di; Hämäläinen, Timo; Miraghaei, Parsa (MDPI AG, 2023)The introduction of 5G technology along with the exponential growth in connected devices is expected to cause a challenge for the efficient and reliable network resource allocation. Network providers are now required to ... -
Adversarial Attack’s Impact on Machine Learning Model in Cyber-Physical Systems
Vähäkainu, Petri; Lehto, Martti; Kariluoto, Antti (Peregrine Technical Solutions, 2020)Deficiency of correctly implemented and robust defence leaves Internet of Things devices vulnerable to cyber threats, such as adversarial attacks. A perpetrator can utilize adversarial examples when attacking Machine ... -
Artificial Intelligence for Cybersecurity : A Systematic Mapping of Literature
Wiafe, Isaac; Koranteng, Felix N.; Obeng, Emmanuel N.; Assyne, Nana; Wiafe, Abigail; Gulliver, Stephen R. (IEEE, 2020)Due to the ever-increasing complexities in cybercrimes, there is the need for cybersecurity methods to be more robust and intelligent. This will make defense mechanisms to be capable of making real-time decisions that can ... -
Analysing Multidimensional Strategies for Cyber Threat Detection in Security Monitoring
Shelke, Palvi; Hämäläinen, Timo (Academic Conferences International Ltd, 2024)The escalating risk of cyber threats requires continuous advances in security monitoring techniques. This survey paper provides a comprehensive overview of recent research into novel methods for cyber threat detection, ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.