
Antti Niiranen

Machine learning based ISA detection for short shellcodes

Master’s Thesis in Information Technology

June 20, 2021

University of Jyväskylä

Faculty of Information Technology

Author: Antti Niiranen

Contact information: antti.n.niiranen@student.jyu.fi

Supervisor: Andrei Costin

Title: Machine learning based ISA detection for short shellcodes

Työn nimi: Lyhyen hyökkäyskoodin käskykanta-arkkitehtuurin havaitseminen koneoppimiseen

perustuvan sovelluksen avulla

Project: Master’s Thesis

Study line: Computer Science, Cyber Security

Page count: 77+17

Abstract: Shellcodes are often used by cybercriminals in order to breach computer systems.

Code injection is still a viable attack method because software vulnerabilities have not ceased

to exist. Typically these codes are written in assembly language. Traditional method of anal-

ysis has been reverse engineering, but as it can be difficult and time-consuming, machine

learning has been utilized to make the process easier. A literature review was performed to

gain an understanding about shellcodes, artificial intelligence and machine learning. This

thesis explores how accurately a state-of-the-art machine learning ISA detection tool can de-

tect the instruction set architecture from short shellcodes. The used method was experimental

research, and the research was conducted in a virtual environment mainly for safety reasons.

Using three different sources which were Exploit Database, Shell-Storm and MSFvenom,

approximately 20000 shellcodes for 15 different architectures were collected. Using these

files, a smaller set of shellcodes was created in order to test the performance of a machine

learning based ISA detection tool. When limitations were identified, it was noted that the test

set may not be diverse or large enough. Nevertheless, with this set it was possible to gain an

understanding on how the program currently handles shellcodes. The study found that with

the current training, the program is not able to reliably detect ISA from the shellcodes of the

database. Two different detection options were used and they both achieved the accuracy of

approximately 30%. The different classifiers were tested as well and random forest had the

i

best performance.

Keywords: Artificial intelligence, machine learning, shellcode, code analysis

Suomenkielinen tiivistelmä: Hyökkäyskoodi (engl. shellcode) on usein käytössä kyber-

rikollisuudessa, kun tarkoituksena on tunkeutua erilaisiin tietoteknisiin järjestelmiin. Koodi-

injektio on yhä toimiva hyökkäysmenetelmä, sillä ohjelmistohaavoittuvuudet eivät ole kadon-

neet mihinkään. Tyypillisesti tällainen koodi kirjoitetaan konekielellä. Perinteisesti näitä

hyökkäyskoodeja on analysoitu takaisinmallintamalla, mutta menetelmän vaikeuden takia

on ryhdytty turvautumaan koneoppimiseen, jotta prosessista tulisi helpompi. Tutkielmassa

tehdyn kirjallisuuskatsauksen avulla hankittiin tietoa hyökkäyskoodeista, tekoälystä ja ko-

neoppimisesta. Tässä tutkielmassa selvitettiin, kuinka tarkasti viimeisintä tekniikkaa edus-

tava koneoppimispohjainen sovellus havaitsee hyökkäyskoodin käskykanta-arkkitehtuurin.

Tutkimus oli kokeellinen ja se suoritettiin virtuaaliympäristössä muun muassa turvallisuuden

takia. Työssä rakennettiin reaalimaailmaan perustuva hyökkäyskooditietokanta, joka sisältää

noin 20000 hyökkäyskooditiedostoa 15 eri arkkitehtuurille. Koodit hankittiin kolmesta eri

lähteestä, jotka ovat Exploit Database, Shell-Storm ja MSFvenom. Näistä koodeista koostet-

tiin pienempi joukko testaamista varten. Tutkimuksen rajoituksia pohdittaessa todettiin, että

testitietokanta saattaa olla liian suppea, mutta sen avulla kuitenkin pystyttiin kartoittamaan

sovelluksen tämänhetkinen toiminta. Testeissä selvisi, että sovellus ei tällä hetkellä kykene

havaitsemaan hyökkäyskoodin käskykanta-arkkitehtuuria riittävällä tarkkuudella. Kahta eri

skannausasetusta testattiin, joista molemmat saavuttivat noin 30% tarkkuuden. Sovelluksen

luokittelijat testattiin myös, niistä satunnaismetsä toimi parhaiten.

Avainsanat: Tekoäly, koneoppiminen, haittakoodi, hyökkäyskoodi, koodianalyysi

ii

Glossary

Architecture The unique encoding of a computer’s instructions (Clemens

2015, S157). A processor architecture comprises an instruction

set and knowledge about registers (Sweetman 2007, 29).

Endianness Byte-order, i.e. the expected order of multi-byte data when it

is in memory (Clemens 2015, S157). Endianness is divided

into little-endian and big-endian. (Sweetman 2007, 280-281).

Little-endian is an order where bytes are stored from least sig-

nificant to most significant and big-endian means storing bytes

using the opposite order (”Endianness” 2020).

ISA Instruction Set Architecture. It provides an interface between

hardware and software, and it defines the interface between the

basic machine instruction set and the runtime and input/out-

put control (Fox and Myreen 2010, 243; Abd-El-Barr and El-

Rewini 2005, 1).

Word size The maximum amount of bits that a processor can handle at a

time, for example 32 or 64 bits (Clemens 2015, S158).

IoT Internet of Things

iii

List of Figures
Figure 1. Areas and applications of artificial intelligence (Atlam, Walters, and Wills 2018)11
Figure 2. Different machine learning techniques and the type of data they require (Mo-

hammed, Khan, and Bashier 2017, 7). 13
Figure 3. An example of a decision tree (Han and Kamber 2011, 331) . 18
Figure 4. An example of a perceptron with m input features (Mohammed, Khan, and

Bashier 2017, 91) . 22

List of Tables
Table 1. Architectures and the number of shellcodes after adding them from Exploit

Database and Shell-Storm . 31
Table 2. Final shellcode database . 32
Table 3. Shellcode collection for running tests. 34
Table 4. Detection results for ARM and ARM 64 using the code-only option 36
Table 5. Detection results for MIPS and MIPS 64 using the code-only option. 37
Table 6. Detection results for PowerPC and PowerPC 64 using the code-only option 38
Table 7. Detection results for SPARC using the code-only option . 39
Table 8. Detection results for ARM and ARM 64 using the fragment option 40
Table 9. Detection results for MIPS and MIPS 64 using the fragment option 41
Table 10. Detection results for PowerPC and PowerPC 64 using the fragment option 42
Table 11. Detection results for SPARC using the fragment option. 43
Table 12. Overall detection results with the code-only option . 44
Table 13. Overall detection results with the fragment option . 45
Table 14. Detection results for random forest classifier . 46
Table 15. Detection results for 1 nearest neighbor classifier . 47
Table 16. Detection results for 3 nearest neighbor classifier . 48
Table 17. Detection results for decision tree classifier . 49
Table 18. Detection results for naïve Bayes classifier . 50
Table 19. Detection results for neural net classifier . 51
Table 20. Detection results for SVM/SMO classifier . 52
Table 21. Results of MSFvenom bad character analysis. 53
Table 22. MSFvenom LHOST analysis . 53
Table 23. MSFvenom RHOST analysis . 54
Table 24. MSFvenom LPORT analysis . 55
Table 25. Overall, the 10 most problematic bytes. 56
Table 26. The 10 most problematic bytes in MSFvenom bad character analysis. 56
Table 27. The 10 most problematic bytes in LHOST analysis . 57
Table 28. The 10 most problematic bytes in RHOST analysis . 57
Table 29. The 10 most problematic bytes in LPORT analysis. 58

iv

Contents
1 INTRODUCTION . 1

1.1 Research questions . 2
1.2 Organization . 2

2 OVERVIEW OF SHELLCODE . 4
2.1 Writing shellcode. 4
2.2 Shellcode-based attacks . 6

2.2.1 Buffer overflow . 6
2.2.2 Shellcode embedded documents . 7

2.3 Shellcode analysis . 8

3 OVERVIEW OF ARTIFICIAL INTELLIGENCE . 9

4 OVERVIEW OF MACHINE LEARNING . 12
4.1 Supervised learning . 13
4.2 Unsupervised learning . 14
4.3 Semi-supervised learning . 15
4.4 Reinforcement learning . 15
4.5 Deep learning . 16
4.6 Machine learning algorithms . 16

4.6.1 Decision trees . 17
4.6.2 Random forest . 18
4.6.3 Rule-based classifiers . 19
4.6.4 Naïve Bayes classifiers . 19
4.6.5 K-nearest neighbor classifiers . 20
4.6.6 Neural networks . 21
4.6.7 Linear discriminant analysis . 22
4.6.8 Support vector machine . 22
4.6.9 K-means clustering . 23

4.7 Machine learning based code analysis . 24

5 METHODOLOGY AND RESEARCH DATA . 26
5.1 Reliability and validity . 27
5.2 Research environment . 27
5.3 MSFvenom bad character analysis . 28
5.4 Creating the shellcode database . 29
5.5 Testing a machine learning based ISA detection system . 32

6 RESULTS . 35
6.1 Detection results . 35
6.2 Results from testing shellcodes with the code-only option. 36
6.3 Results from testing shellcodes with the fragment option . 40
6.4 Analyzing the results of the scans . 43

v

6.5 Results from testing the classifiers . 45
6.6 Results of MSFvenom bad character analysis . 52

7 DISCUSSION. 59
7.1 Limitations. 62
7.2 Future work . 62

8 CONCLUSION . 64

BIBLIOGRAPHY . 66

APPENDICES . 71
A Python scripts used in bad character analysis of MSFvenom 71
B Python script for generating shellcodes with MSFvenom . 79
C Rejected bad bytes in each MSFvenom test. 81

vi

1 Introduction

In cybercrime, attackers often use shellcode to compromise various computer systems and

other such devices. Potentially an attack like this can have devastating effects because if

successful, it can enable cybercriminals to obtain a shell connection, which is the highest

level privilege available, to the targeted device (Brinda and George 2016, 310). Even the term

shellcode originally refers to gaining a shell connection, although currently shellcodes are

written for other purposes as well. These shellcodes are pieces of bytecode, typically written

in assembler, which are used as the payload in the exploitation of software vulnerabilities

(Anley et al. 2007, 41).

The ability to correctly analyze shellcode is crucial, and the two main methods for this are

static and dynamic analysis (Sikorski and Honig 2012, 2). For shellcodes especially, manual

reverse engineering is a typical method of analysis, though it is time-consuming and requires

significant expertise (Borders, Prakash, and Zielinski 2007, 501). Regardless of the method,

the first phase of analysis is to correctly detect the Instruction Set Architecture of the opcodes

within the shellcode, but this information is not always readily available (Kairajärvi, Costin,

and Hämäläinen 2020b). However, it is required and crucial information because without

it, analysts are not able to correctly decode the instructions of the shellcode and find out

what it does (Clemens 2015, S157). In addition, human error is a factor to be noted in

the analysis process. Incorrectly identifying the Instruction Set Architecture of binary code

caused approximately 10% of failures in the firmware analysis of IoT devices (Kairajärvi,

Costin, and Hämäläinen 2020b).

This requirement of correctly identifying the Instruction Set Architecture of the shellcodes

along with the fact that the amount of new processor architectures is on the rise because of

the constantly growing number of various IoT devices has created a need for a state-of-the-

art solution for performing the initial detection of Instruction Set Architecture (Kairajärvi,

Costin, and Hämäläinen 2020b). Thus machine learning has been utilized in the attempt to

solve this problem. Researchers in this field seem to agree (Borders, Prakash, and Zielinski

2007; Clemens 2015; Kairajärvi, Costin, and Hämäläinen 2020b) that these machine learning

based tools are promising and will help analysts to be more efficient and accurate in their

1

work.

To the best knowledge, the machine learning based state-of-the-art tool that is under ex-

amination in this thesis has not previously been tested with short shellcodes in this scope.

Therefore, this thesis will provide new research data and shellcode database might be useful

to other researchers as well. These are the two main contributions of this thesis. In addition,

the research topic is current and relevant. As Chen et al. (2016, 107) state, a code injection

attack is an old method, but still viable and popular because software vulnerabilities have not

ceased to exist.

1.1 Research questions

The goal of this thesis is to answer these two main research questions:

RQ1: How to create a significant and representative real-world database of shellcodes?

RQ2: How accurately can a machine learning based ISA identification system detect the

correct CPU architecture and endianness from short shellcodes?

And the following sub-questions:

SQ1: How to automate the creation of the shellcode database?

If the accuracy of the detection is not satisfactory:

SQ2: How can machine learning based ISA identification systems be improved?

SQ3: Which different one byte combinations MSFvenom accepts or rejects as bad charac-

ters, and what are the most problematic bytes?

1.2 Organization

This section explains how this thesis is organized after chapter 1. Chapter 2 gives some

insight into shellcodes. The chapter describes what shellcodes are, how they are written,

and gives some examples on how shellcodes are used in cyber attacks. Finally, the topic of

shellcode analysis is explored.

Chapter 3 briefly discusses the broad topic of artificial intelligence. First, the chapter de-

2

scribes what artificial intelligence is and then it discusses the various subfields of artificial

intelligence. The purpose of this chapter is not to dive very deep into this topic, but rather

explain how machine learning fits into this context and that it is just one subfield of artificial

intelligence.

Chapter 4 explores machine learning. The chapter begins by describing what machine learn-

ing is and then moves on to discuss the different machine learning methods. Afterwards,

the machine learning algorithms that are relevant to this thesis are described and finally, the

topic of machine learning based code analysis is explored. This final section of the chapter

concentrates on studying previous research in this field.

Chapter 5 explains how the research was conducted, what methods were used and how the

research data was gathered. Chapter 6 presents the results of the research, chapter 7 discusses

them, identifies limitations and explores opportunities for further research. Finally, chapter 8

concludes this thesis.

3

2 Overview of shellcode

Shellcode is a piece of bytecode which is used as the payload when attempting to exploit

software vulnerabilities. A piece of shellcode can also be seen as an instruction set, which

is injected and executed by the targeted program. Originally, the purpose of shellcode was

to execute a shell, hence the name shellcode, but recently the definition has changed or

broadened. Currently shellcodes are written for other purposes as well, such as creating files,

proxying system calls, directly manipulating registers, or changing how a program functions.

Shellcodes are typically written in assembler and then translated into hexadecimal opcodes,

which are actual machine instructions. If a piece of shellcode has been written with a high-

level language, injecting it will most likely fail, because such shellcode may not execute

cleanly (Anley et al. 2007, 41-42; Foster and Price 2005, 631).

Assembly is a low-level programming language and therefore it enables creating programs

that are fast and very small. However, assembly has some drawbacks as well. For example,

assembly code is dependent on the processor, so it is difficult to port it to other processors as

well as other operating systems even if they are running on the same processor (Foster and

Price 2005, 336).

2.1 Writing shellcode

When writing shellcode, the most important thing to take into consideration is that the code

should be as short and simple as possible. As shellcode will be injected into vulnerable input

areas which are n bytes long, the code must always be shorter than n. Otherwise the process

will fail, because the shellcode does not fit into the input area. The usual target for injection

is a buffer which is set aside for user input and most often the type of this buffer is a character

array (Anley et al. 2007, 44, 48).

For the shellcode to be injectable and successful, it must not contain any nulls which looks

like this:

0x00

The purpose of these null characters is to terminate string and thus, if they are present in the

4

injectable shellcode, it will fail. When writing shellcode, it is essential to figure out ways

to remove any nulls that might exist in the opcodes or use non-null opcodes to replace the

ones that contain nulls. There are two common methods which can be used to achieve null

removal. In the first method, the assembly instructions whose purpose is to create nulls are

replaced with instructions that do not create them. In the second method, nulls are added at

runtime with instructions that do not create them. Because of this,the second if more difficult.

Another thing that makes the second method more difficult is the requirement of knowing the

exactly where the shellcode is located in memory. In addition to making shellcode injectable,

in best case scenarios removing null opcodes also makes the code significantly shorter (Anley

et al. 2007, 26, 48-50). Other examples of bad bytes are:

0x0a 0x0d 0x f f

As stated before, 0x00 is a null byte (Anley et al. 2007, 48), 0x0a is a new-line character,

0x0d is a carriage-return character and 0xff is a form-feed character (Foster and Liu 2006,

397).

The main objective for writing shellcodes is to alter the original functionality of the target

program. One example of this kind of manipulation is to make the program perform a system

call, or syscall in short. System calls are the interface which lies between user mode and

protected kernel mode. The function of system calls is to enable direct access to kernel and

operating system-specific functions. The most basic system call is exit() which ends the

current process. In order to create a piece of shellcode which executes the exit() system call,

one could write this system call in C, compile it into binary and then disassemble it. The

actual assembly instructions can be examined from this disassembly, and also it is important

to understand what these instructions do as they are necessary pieces when creating the

shellcode for the exit() system call. After this, if possible, the shellcode can be cleaned up

in order to make it smaller and the next step is to acquire the hexadecimal opcodes from the

assembly. These opcodes can then be placed into a character array and then a C program can

be created which executes the string. Below is an example of how this process looks like in

the code:

From instructions:

mov $0x1, %eax

5

To opcodes:

b8 01 00 00 00

To character array in C:

char shellcode[] = ”\xb8\x01\x00\x00\x00”;

In any case, now the exit() shellcode should be finished and ready for testing (Anley et

al. 2007, 42-48).

Intrusion detection systems are of course equipped to deal with shellcodes. However, by

using obfuscation and end-to-end encryption for shellcodes to encrypt data communication,

it is possible to bypass intrusion detection (Anley et al. 2007, 299-311).

2.2 Shellcode-based attacks

Shellcode-based attacks are common, and it is possible to execute them in various ways. The

purpose of this section is not to discuss them all, but rather give some examples of perhaps

some of the most typical ways to use shellcode for malicious purposes.

2.2.1 Buffer overflow

One method to inject shellcode is to successfully perform a buffer overflow attack. A buffer

overflow is probably the most widely known software security vulnerability. It happens when

more data is copied to a buffer, which has been allocated a specific amount of storage space,

than it can handle. These overflows can be divided into two classes: heap overflows and

stack overflows. Buffer overflows are a consequence of badly developed software programs.

The programming mistakes that result in buffer overflows can be either small or complex,

and these mistakes can be found in both local and remote programs. (Foster et al. 2005, 3-4,

18).

There are several ways to detect and prevent buffer overflows. Analyzing source code is one

of these methods. Source code analysis can reveal the size of the copied data and the size

of the buffer where the data will be copied. An overflow will occur, if the size of the data is

6

larger than that of the buffer. However, source code analysis can take a lot of time and it is not

easy as it requires a lot of programming skills and knowledge about software security. There

are also some applications that scan the code and perform security analysis which can pro-

duce reliable results (Foster et al. 2005, 404-405, 450-452). Some programming languages

such as C and C++ are more vulnerable to buffer overflows, so using them should be avoided

if possible. This is because several functions in these languages that have access to memory

and can manipulate it do not perform bounds checking. Therefore, these functions can over-

write the allocated buffers they are used on. These languages have bounded functions as well,

but even with those incorrect usage can result in vulnerabilities (”Buffer Overflow | OWASP”

2020). As buffer overflows are a direct consequence from programming mistakes, allowing

programmers to concentrate on using their core skills instead of countless and sometimes

pointless software development methodologies might help to reduce programming mistakes

and thus, reduce overflows as well (Shaw 2020).

2.2.2 Shellcode embedded documents

One, quite often used attack vector is to embed shellcode in documents. Formats such as

portable document format, or PDF, Word, and PowerPoint are popular among attackers be-

cause they are considered easy to exploit. In addition, the malicious components in docu-

ments such as these are not always easy to detect, and many security mechanisms can have

difficulties with them (Brinda and George 2016, 310). The PDF format describes the text

formatting, graphics hypertext, bookmarks, and multimedia elements. In addition to text,

PDF documents can contain standalone scripts, images, and other multimedia elements. The

PDF format is appealing to attackers because of the dynamic data which allows them to

embed shellcode in these documents. The objective of shellcodes in these cases could be,

for example, to open a backdoor or download malware to the victim’s system (Brinda and

George 2016, 310-311). Microsoft Office uses and holds the title for the Object Linking and

Embedding Technology which enables embedding and linking to the documents and using

different sources to add various data components to the documents. It creates a compound

binary file, or CBF in short, which stores data in multiple streams and these streams in turn

are held in different storages. The storages resemble subdirectories and the streams resem-

7

ble files. These data streams can also contain malicious shellcode (Brinda and George 2016,

310-312).

2.3 Shellcode analysis

Static and dynamic analysis are the two cardinal methods for discovering vulnerabilities and

analyzing shellcodes and malware. In static analysis malicious objects are observed without

executing them, and in dynamic analysis they are analyzed after execution, in a running state

(Sikorski and Honig 2012, 2). For shellcodes, manual reverse engineering is a common

method of analysis. Successful reverse engineering can reveal important information, such

as the purpose of the exploit payload, about the functionality of shellcodes. This information

can be essential in creating and implementing defense mechanisms for the exploit. However,

the drawback is that manual reverse engineering can be cumbersome, time-consuming, and

challenging as it requires serious expertise (Borders, Prakash, and Zielinski 2007, 501).

The execution of shellcodes is not similar to that of normal executables as shellcodes are

often only binary chunks of data. This means that loading and running shellcodes in a de-

bugger can cause problems because the user might have to provide input during the loading

process and select the correct processor architecture as well (Sikorski and Honig 2012, 408).

Selecting the correct architecture is crucial. For example, in the IoT firmware analysis ap-

proximately 10% of analysis failures were caused by incorrect identification of the binary

code’s instruction set architecture. If an incorrect architecture is selected, opcodes will be

misread and this leads to errors in the analysis process (Kairajärvi, Costin, and Hämäläinen

2019).

8

3 Overview of artificial intelligence

According to Garnham (1987, 2) artificial intelligence is the study of intelligent behavior,

but Kaplan (2016, 1) points out that artificial intelligence has several proposed definitions

and while there is not one single clear definition for this concept, the general consensus is

that artificial intelligence means creating computer programs or machines that are able to

perform in a way which humans perceive as intelligent. Garnham (1987, 2) agrees and adds

that another purpose for artificial intelligence is to understand human intelligence. Artificial

intelligence has many subfields, though they all aim to address similar problems. In addi-

tion to machine learning, some of the more notable subfields are robotics, computer vision,

speech recognition and natural language processing (Kaplan 2016, 49).

Robotics aims to build machines that perform various physical tasks. Usually the focus

in robotics is to build machines that can perform specialized and complex tasks instead of

general ones. One clear advantage of machines is that they can work in conditions and

perform tasks that are too dangerous for humans (Kaplan 2016, 49-54).

Computer vision aims to equip computers with the ability to interpret visual images, or in

human terms, to see. Early work in this field concentrated on creating algorithms that used

specialized knowledge of visual images and descriptions of objects to search meaningful

elements. In the modern work of this field machine learning is used in order to build models

of objects from large collections of examples. Mainly computer vision technology is used

to solve real-world problems that are visual by nature to gather information. One major

application of this technology are numerous real-world problems which involve identifying

and locating objects of interest in a specified setting. Another major application is related

to information. Currently data is mostly in digital form and has become more visual which

enables computer vision technology to begin managing this data automatically (Kaplan 2016,

54-57).

Speech recognition is probably one of the most challenging subfields because processing

speech is much more complex a task than processing visual images or written language.

There are many factors which make speech recognition difficult for computers. For exam-

9

ple, speech must be separated from any background noise and the meaning of spoken words

is affected by elements such as volume, tone, and pitch. In addition, some words sound the

same when spoken out loud. In order to recognize speech and figure out its’ meaning, ma-

chines must correctly interpret all these elements and handle possible distractions as well.

However, recently modern machine learning techniques have enhanced the precision and

utility of speech recognition systems because it is possible to collect and analyze large quan-

tities of speech samples with these techniques. Currently state-of-the-art speech recognition

systems are not nearly as capable as human speakers, but they have real utility in limited

domains (Kaplan 2016, 57-60).

Natural language processing observes the interactions between natural human languages and

computer languages. The old approach to natural language processing was to codify natural

human language to word categories and sentence structure. The aim was to imitate the gen-

erally accepted view of languages obeying syntactic rules. However, this approach proved to

be too inflexible because human languages and their usage is complex, and formal grammat-

ical analysis is not enough to capture what is really going on. More recently the approach

to natural language processing has changed. Now machine learning, especially statistical

machine learning methods are used to analyze human languages. This analysis enables com-

puters to solve practical language-related problems such as translating from one language

to another, answering question from databases of facts and generating summaries of docu-

ments. With large amounts of examples, it is possible for computers to work with languages

reasonably well even without knowing the meaning of the texts (Kaplan 2016, 60-64). Areas

and applications of artificial intelligence can be viewed from figure 1 below.

10

Figure 1. Areas and applications of artificial intelligence (Atlam, Walters, and Wills 2018)

11

4 Overview of machine learning

Machine learning is another major subfield of artificial intelligence. The objective of ma-

chine learning is to enable machines to skillfully perform and complete the tasks assigned to

them by using intelligent software (Mohammed, Khan, and Bashier 2017, 4). This field fo-

cuses on developing computer systems that have the ability learn from provided data. These

systems may then automatically learn and improve, and with enough time and experience

they might develop models which can be used to predict outcomes of problems and give

answers to questions based on previous learning (Bell 2014, 2). In other words, in machine

learning the aim is to answer how computers can learn specific tasks such as recognition,

categorization and even helping specialists of different fields to make decisions (Fernandes

de Mello and Antonelli Ponti 2018, 1).

There are many different learning algorithms that can be used in machine learning, and the

required output defines which one should be used. These algorithms can be placed in one

of these two learning types: unsupervised learning or supervised learning (Bell 2014, 2-3).

However, the performance of machine learning models and algorithms severely depend on

the representation of the data provided to them. This also means that the choice of repre-

sentation significantly impacts the performance of the algorithms (Goodfellow, Bengio, and

Courville 2016, 3). According to Mohammed, Khan, and Bashier (2017, 7), in total there

are four different learning types which can be seen in the figure 2 below along with their

required data.

12

Figure 2. Different machine learning techniques and the type of data they require (Mo-

hammed, Khan, and Bashier 2017, 7)

There is also a machine learning method known as deep learning which is not to be confused

with the four methods described in figure 2. Deep learning will be discussed further in

section 4.5, but for now, it is a subfield of machine learning which uses many layers of

information-processing stages in hierarchical architectures to perform pattern classification

and representation learning (Deng 2014).

4.1 Supervised learning

In supervised learning the work is done with a set of labeled training data. Each piece

of training data there contains two objects, one for input and one for output (Bell 2014,

3). These objects contain labels or tags and together they form a training example. Thus,

training data consists of training examples. A label or a tag from an output object is the

explanation of its’ respective input example from an input object. If labeling does not exist

for an input object, it is unlabeled data. The output object consists of labels for every training

example which are present in the training data. A supervisor provides these labels and usually

the supervisor is a human being, but labeling can be done by machines as well. Human

labeling costs more and machine labeling has higher error rates, so currently human labeling

is considered superior. In addition, manually labeled data is a reliable source for supervised

13

learning (Mohammed, Khan, and Bashier 2017, 7-8).

When using supervised learning, there are some issues that need to be taken into consider-

ation. One example of these issues is the bias-variance dilemma, or bias-variance tradeoff.

High bias models contain restricted learning sets while high variance models tend to be more

complex, and they learn with complexity against noisy training data (Bell 2014, 3). The op-

timal approach would be to have both low bias and low variance, but it is not possible and

hence a tradeoff has to be made between them: if one is improved, most likely the other will

worsen. High bias can be fixed by getting more features, making the model more complex

or by changing the model. High variance can be fixed by getting more data or by decreasing

the complexity (Richert and Coelho 2013, 102-3).

Another thing to take into consideration is the class imbalance problem. It is a problem

where one class is heavily represented and another one is much smaller in proportion. The

class imbalance problem is a significant issue because in some cases it severely hinders the

performance of any learning method which assumes a balanced class distribution (Japkowicz

2000).

4.2 Unsupervised learning

In unsupervised learning, training data or supervisors are not present. Therefore, there is

only unlabeled data and there can be many reasons for this. For example, it may be a lack

of funds to pay for manual labeling, or the data itself can be inherent (Mohammed, Khan,

and Bashier 2017, 9-10). It is up to the machine learning algorithms to find hidden patterns

in this data. There are no correct or false outcomes in this type of machine learning, the

algorithms are just run in order to see what results and patterns occur in the data (Bell 2014,

3-4). Nowadays, when data is collected at an unprecedented rate, it is important to get

something from this massive amount of data without supervisors (Mohammed, Khan, and

Bashier 2017, 9).

Clustering is a common unsupervised machine learning method. This method aims to seg-

ment data into specific groups that share similar characteristics. In other words, this is how

the classification is done in unsupervised learning. Clustering has wide applications and it

14

is used, for example, in social media analysis, market research, law enforcement and IoT

related analysis. Generally clustering is useful when it is necessary to group multivariate

data into distinctive groups (Bell 2014, 161-64).

4.3 Semi-supervised learning

In semi-supervised learning, the used data is a combination of classified and unclassified

data. Using this mixture, a suitable model for the classification of data is generated. In most

cases the amount of unlabeled data is abundant, and the amount of labeled data is much

scarcer. Thus, generally the approach here is to combine these large quantities of unlabeled

data with the much smaller amounts of labeled data. The goal is to generate a model that can

make more accurate predictions than a model which has been created by only using labeled

data. It can be said that human learning resembles semi-supervised learning. In human terms,

the environment provides unlabeled data and a supervisor, a teacher for example, provides

labeled data by pointing out objects in the environment and giving them names, i.e. labels

(Mohammed, Khan, and Bashier 2017, 10-11).

4.4 Reinforcement learning

In reinforcement learning the approach is to use observations gathered from interacting with

the environment to take actions which aim at maximizing rewards or minimizing risks. When

producing intelligent programs, also known as agents, reinforcement learning goes through

a process which can be divided into four stages. In the first stage, the program observes the

input state. Then, in the second stage the program performs an action by using a decision-

making function. In the third stage, after the action of the second stage is completed, the

program receives feedback from the environment in the form of reward or reinforcement.

And finally, in the fourth stage, the state-action pair information about the feedback received

during the third stage is saved. After this process is completed, the saved information can

be used to adjust the action of any stored state-action pair. This procedure can enhance the

program’s decision-making capabilities. (Mohammed, Khan, and Bashier 2017, 11).

15

4.5 Deep learning

It is possible to solve various artificial intelligence tasks by designing the correct set of

features to extract for the task at hand, and then giving these features to a machine learning

algorithm. But in some cases, it is not easy to figure out which features could be useful in

completing the given task. There is an approach known as representation learning, which

is used to solve these kinds of problems. Representation learning is a technique in which

machine learning is used to discover both the mapping from representation to output and the

representation itself (Goodfellow, Bengio, and Courville 2016, 4).

However, variations in raw data can cause problems for many real-world artificial intelli-

gence applications, because for computers it is difficult to understand the meaning of raw

sensory input data. For example, a red object can appear darker, almost black at night, and in

most cases the shape of the silhouette of objects depend on the viewing angle. Usually arti-

ficial intelligence applications require human touch to examine these variations and discard

those that are not needed. In addition, extracting abstract features such as the ones discussed

above from raw data can be a challenging task, and identifying these kinds of variations

require sophisticated, close to human-level understanding of the data. Representation learn-

ing does not seem to be effective when obtaining representations and solving the original

problem are almost equally difficult (Goodfellow, Bengio, and Courville 2016, 5-6).

Deep learning attempts to solve this pivotal problem in representation learning using multi-

ple other representations that are much more simple by nature. When applying deep learning

methods, computers can use simple concepts to build more complex ones. One demonstra-

tion which clarifies this process is how deep learning can be used to construct a complete

image from multiple simpler pieces. This is achieved by combining simple concepts into

more complex ones until the full image is constructed (Goodfellow, Bengio, and Courville

2016, 5-6).

4.6 Machine learning algorithms

Some of the most common machine learning algorithms, or those relevant to this thesis,

will be introduced in the following subchapters. These algorithms are either supervised or

16

unsupervised learning algorithms.

The supervised algorithms that will be discussed are rule-based classifiers, decision trees,

naïve Bayesian classifiers, k-nearest neighbor classifiers, neural networks, linear discrimi-

nant analysis, and support vector machine. Supervised learning algorithms can be placed

in either one of these two categories: regression or classification (Mohammed, Khan, and

Bashier 2017, 8, 35). In classification, the aim is to assign an unknown pattern to known

classes, and in regression, the goal is to solve a curve fitting problem, or to attempt to predict

continuous values such as stock market prices (Theodoridis 2015, 2-4).

Regarding unsupervised learning, there exists a wide variety of algorithms especially for

clustering, so sometimes the most sensible method to choose the correct algorithm is exper-

imentation (Bell 2014, 162). Some examples of unsupervised learning algorithms according

to Mohammed, Khan, and Bashier (2017, 129) are k-means clustering, Gaussian mixture

model, hidden Markov model and principal component analysis in context of dimensionality

reduction. However, only the k-means clustering algorithm will be discussed in this thesis.

4.6.1 Decision trees

Decision trees are tree structures which can resemble flowcharts. They consist of non-leaf

nodes, leaf nodes, branches, and a root node. A non-leaf node stands for a test on an attribute,

a leaf node holds a class label, a branch represents a result of the test and finally. The topmost

node is the root node and it represents the attribute which has the main role in classification.

Decision trees classify data in datasets, and they do this by flowing through a query structure

from root node to leaf node. Below, in figure 3 a classic decision tree model is shown,

and rectangles represent non-leaf nodes and ovals represent leaf nodes. The point of this

decision tree is to indicate how likely it is for a customer to purchase a certain product (Han

and Kamber 2011, 330-31; Mohammed, Khan, and Bashier 2017, 37).

17

Figure 3. An example of a decision tree (Han and Kamber 2011, 331)

4.6.2 Random forest

Random forest is an ensemble method which consists of many individual decision trees. Ev-

ery classifier in this ensemble is a decision tree. When generating individual decision trees,

randomly selected attributes are used at every node in order to determine the split. In ad-

dition, by performing the random feature selection, the decision tree models are diversified.

Once the ensemble is created, a voting system is used to combine the predictions of the trees

and the returned class is the one that is the most popular. Random forest has the ability to

work efficiently with very large datasets, the kind of with which other models may fail. The

reason for this ability is that the ensemble does not utilize the full feature set, instead it only

uses a small, randomly generated part of it (Han and Kamber 2011, 382-83; Lantz 2013,

344-45). Using these ensemble methods can yield more accurate results when compared

to using just their base classifiers, and based on this it can be assumed that random forests

might enhance the overall accuracy of decision trees (Han and Kamber 2011, 378, 386).

Random forest is a strong model because of its’ reliable performance and versatility. In

addition, random forest can deal with noisy or missing data as well as massive datasets, and

it also is able to select the most important features from these massive datasets. On the

18

downside, random forest is not as easy to interpret as, for example, a decision tree. Also,

tuning this model to the data might require some effort (Lantz 2013, 345).

4.6.3 Rule-based classifiers

In rule-based classifiers sets of IF-THEN rules are used for classification. Here, IF represents

the rule antecedent or precondition, and it is composed of at least one attribute test such as

age or occupation, or both. If there are more than one rule antecedent, they are combined

with the logical AND operator. THEN, the latter part of this rule pair, is the rule consequent

and it comprises a class prediction. For example, the purchase behavior of customers can be

predicted here. A rule antecedent is satisfied when the conditions in it hold true. Rules can

also be assessed by their coverage and accuracy. One method to create these rules is to extract

them from decision trees so that every path between a root node and a leaf node becomes a

rule. This can be a useful approach if the decision tree is very large (Han and Kamber 2011,

355-57; Mohammed, Khan, and Bashier 2017, 53). An example rule R, according to Han

and Kamber (2011, 355), can be:

R : IF age = middle−aged AND working = yes T HEN purchases_product = yes

4.6.4 Naïve Bayes classifiers

Bayesian classifiers are statistical classifiers that have the ability to predict class membership

probabilities. Bayesian classification is based on Bayes’ theorem:

P(H|X) =
P(X |H)P(H)

P(X)

In this equation, H represents a hypothesis and X represents data. For example, H can be a

hypothesis about X belonging to a certain class.

P(H|X) represents the posterior probability of H conditioned on X. For example, X could be

a customer who belongs to certain age and income groups, and H could be that this customer

buys a certain product. In this case P(H|X) would represent the probability of customer X

purchasing a product given that this customer’s age and income are known.

P(X|H) represents the posterior probability of X conditioned on H. Using the previous exam-

ple, this is the probability of customer X, given that his age and income are known, purchas-

19

ing a product.

P(H) stands for prior probability of H. For example, this value represents the likelihood of a

customer, regardless of any personal information such as age or income, purchasing a prod-

uct.

P(X) represents the prior probability of X. For example, this represents how likely it is that

a person from the entire dataset belongs to certain age and income groups (Han and Kamber

2011, 350-51).

Naïve Bayesian classifiers are probabilistic by nature and they are based on the Bayes’ theo-

rem. These classifiers strongly, or naïvely, assume that an attribute value’s effect on a given

class is indepentent of the values of other attributes (Han and Kamber 2011, 385). According

to Lantz (2013, 95), these assumptions typically do not work or are not true when applied to

most of the real-world scenarios. However, the performance of Naïve Bayes is decent even

when these assumptions are mistaken. There are other machine learning algorithms that use

Bayesian methods, but naïve Bayes is the most common of them and in addition it is the

standard method in text classification (Lantz 2013, 95). The Naïve Bayesian algorithm is

simple, fast and effective, it can handle noisy and missing data well, the estimated proba-

bility for a prediction is easy to get, and the requirement for training examples is not very

high, and it works well with high amount of training examples as well. The drawbacks are

that The Naïve Bayesian algorithm is not optimal for datasets with large numbers of numeric

features, it relies on an assumption that features are independent and equally important, and

estimated probabilities are not as reliable as the predicted classes (Lantz 2013, 95).

4.6.5 K-nearest neighbor classifiers

The k-nearest neighbor algorithm, k-NN in short, is a simple but effective method that is used

for regression and classification. (Hastie, Tibshirani, and Friedman 2009, 11-18). The input

comprises the k closest training examples in both cases, and the usage determines the output.

When this algorithm is used for classification, a class membership will be the the output.

Classification is made by a majority vote of the object’s neighbors, and the object is assigned

to the most common class among its’ k-nearest neighbor. Typically, k is a small positive

integer and for example, if k = 1, the object will be assigned to the class of this single nearest

20

neighbor. When this algorithm is used for regression, be the property value for the object

will be the output. This property value is the average of the values of its’ k-nearest neighbor

(Mohammed, Khan, and Bashier 2017, 83). The k-NN algorithm is simple and effective, it

has a fast training phase, and it does not assume anything about the underlying distribution

of data. On the downside, the k-NN algorithm’s classification phase is slow, it has a high

memory requirement, missing data and nominal features require additional processing. In

addition, the k-NN enables the creation of such models that do not limit the ability to discover

new insights in the features’ relationships (Lantz 2013, 67).

Nearest neighbor methods are so-called lazy learning algorithms because they do not execute

the processes of abstraction and generalization. Lazy learners do not actually learn anything,

instead they only store the training data verbatim, and because of this the training phase is

very fast. The potential drawback here is that the prediction-making process can be relatively

slow (Lantz 2013, 74-75).

4.6.6 Neural networks

Artificial neural networks are models that draw their inspiration from the biological neural

networks such as animal brains. The basis of these networks are simple forms of inputs and

outputs. Brains contain neurons, and in biological terms these neutrons are cells that can

transmit and process electrical or chemical signals. Neurons are connected and together they

form a network that resembles the notion of graph theory with nodes and edges. Artificial

neural networks are used in real-time or very near real-time scenarios because they are fast

and can efficiently handle large volumes of data. Currently artificial neural networks are one

of the leading computational intelligence tools, but their performance is still far from the

human brain (Bell 2014, 91-92; Mohammed, Khan, and Bashier 2017, 89-30).

A perceptron is the foundation of a neural network. The perceptron is able to receive many

inputs, but it generates a single output. This process can be broken down to few stages. First,

an input signal is delivered to the perceptron. After the perceptron has received the input

signal is received, it passes this input value through a function and outputs the result of this

function (Bell 2014, 94). A perceptron is the simplest kind of artificial neural network, and

21

it contains a single neuron which can receive multiple inputs and produce a single output

(Mohammed, Khan, and Bashier 2017, 91-92). A visual demonstration is offered in figure 4.

Figure 4. An example of a perceptron with m input features (Mohammed, Khan, and Bashier

2017, 91)

4.6.7 Linear discriminant analysis

Linear discriminant analysis is a generalization of Ronald Fisher’s linear discriminant. Max-

imizing the class discrimination is the objective in linear discriminant analysis and the num-

ber of linear functions it produces is based on the classes. The highest value class for its’

linear function will be the predicted class for an instance. For example, linear discriminant

analysis can be used to predict what smartphone brand a customer belonging to certain age

and income groups could be interested in (Mohammed, Khan, and Bashier 2017, 107-8).

4.6.8 Support vector machine

Support vector machine is a classifier that is based on a linear discriminant function. It is

the most popular such classifier and it has a robust performance especially in binary clas-

sification. (Murty and Raghava 2016, 41). Support vector machines are supervised learn-

ing models with associated learning algorithms that are used for data analysis and pattern

recognition. Support vector machines are flexible and computationally efficient. Thus, they

are versatile and can be applied to various kinds of classification problems (Zolotukhin and

Hämäläinen 2013, 212).

22

In the training phase a support vector machine takes a set of input points. Then, each input

point will be assigned to one of two categories, and finally the support vector machine builds

a model which represents the input points. In this representation a clear gap, that is as wide

as possible, divides the input points of different categories. Afterwards new data points will

be mapped into the same space and prediction takes place. A data point is predicted to belong

to a category based on which side of the gap it fell. Support vector machines can perform

both linear and non-linear classification efficiently (Zolotukhin and Hämäläinen 2013, 212).

4.6.9 K-means clustering

The k-means is possibly the most often used method for clustering. Although it is occasion-

ally confused with the similarly named k-nearest neighbor, the k-means is a different algo-

rithm, albeit it has some similarities with the k-NN method. The k-means algorithm assigns

every n example into k clusters, where k is a predefined number. Maximizing the differences

between clusters and minimizing the differences within each cluster are the objectives of

k-means clustering (Lantz 2013, 271-72). For example, there could be 1000 objects and the

objective could be to find 4 clusters. In this example, n = 1000 and k = 4. Every cluster has

a point where the distance of the objects will be calculated. This point is called the centroid,

which is also known as the mean, and this is where the name k-means originates (Bell 2014,

164).

The k-means algorithm has two phases. First, examples are assigned to an initial set of

k clusters. Next, the assignments are updated by adjusting the boundaries of the cluster

according to the examples that currently fall into it. This two-step process of assigning and

updating happens multiple times, up to the point where making changes does not improve the

cluster fit. At this stage, the clusters are finalized, and the process stops (Lantz 2013, 272).

One thing to take into consideration is that each time the k-means algorithm is used, it gives

different means and clusters due to the random selection of the initial k-means (Mohammed,

Khan, and Bashier 2017, 133).

What is good about the k-means algorithm is that it uses simple principles for cluster identi-

fication, it is efficient and very flexible, and with simple adjustments the k-means can be ad-

23

justed to deal with almost every drawback it has. In addition, the k-means algorithm divides

the data into useful cluster well. The drawbacks are that this algorithm is not as sophisticated

as some of the more recent clustering algorithms. Also, as the k-means uses an element of

random chance, it is not able to find the optimal set of clusters every time. Another drawback

is that the number of clusters that exist in the data naturally must be guessed reasonably well

when using the k-means algorithm (Lantz 2013, 271).

4.7 Machine learning based code analysis

According to other research, machine learning can be used to effectively analyze and eval-

uate code, shellcode included. Borders, Prakash, and Zielinski (2007) introduce Spector in

their research paper. Spector automatically inspects shellcodes which an intrusion detection

system has already deemed as malicious. In addition, Spector can at least deal with obfus-

cation and polymorphism that were current when the research paper was released. After the

inspection Spector produces an output which tells the user what the shellcode does, and this

means that the process of manual reverse engineering can be completely skipped. In this

research, Spector was used to analyze approximately 23000 payloads, and it analyzed these

payloads in about three hours. Spector found 11 different classes of shellcodes based on

how they functioned. For example, these classes included code which connects back to the

attacker or to a malicious web server (Borders, Prakash, and Zielinski 2007, 501-502, 513).

Clemens (2015) demonstrates that machine learning can be used to automatically and ac-

curately analyze object code. This research proves that it is possible to discover the target

architecture and endianness of object code as well as other important information by using

machine learning techniques. This kind of automatic analysis allows analysts to entirely

skip the process of identifying the code’s endianness and target architecture. In this research,

four features were derived and the purpose of these features was to assist in identifying the

architecture and endianness of the target code. Clemens’ theory was that these features are

enough to classify this information. A dataset of over 16000 code samples from 20 different

architectures was created in order to conduct experiments and test this theory. The results

show that different machine learning algorithms can accurately identify the target architec-

ture and endianness of object code even when only a small sample is available. Ten different

24

algorithms were tested and from those the support vector machine and nearest neighbor per-

formed the best with approximately 90% accuracy when only 16 bytes of sample data was

available. In addition, by 8 kilobytes of sample data almost every classifier reached 90%

accuracy. (Clemens 2015, S156-S162).

Kairajärvi, Costin, and Hämäläinen (2020b) introduce ISAdetect, an automatic state-of-the-

art tool for detecting CPU architecture and endianness from binary files and object code.

This research notes that these state-of-the-art tools have potential, but they don’t have the

support of public datasets and toolsets. Therefore evaluating, comparing and improving

any of these datasets, machine learning models and techniques is difficult. In this research

the missing toolset and datasets are developed from the beginning. The dataset contains ISO

files, DEB files, ELF files and ELF code sections and it covers multiple architectures. Several

different classifiers were trained and tested, and then the performance of these classifiers was

compared against other research such as (Clemens 2015). In addition, the effect of the sample

size on the performance of the classification was studied. In this case, the classifiers were

tested against a set of code sections of increasingly varying size. Finally, the performance of

the classifiers was tested against complete binaries. The results show that when the classifiers

are trained and tested using only sections of code from compiled binary files, they can reach

over 98% accuracy. (Kairajärvi, Costin, and Hämäläinen 2020b).

25

5 Methodology and research data

Data in this thesis is acquired by observing, analyzing, and measuring the functionality of a

machine learning based ISA detection application, and the collected data is the cornerstone

of the research. Therefore, this thesis falls under the umbrella of empirical research (Univer-

sity of Jyväskylä 2010b). As this thesis will observe and measure the detection accuracy of

the application, results will be presented in numeric variables, and final discussion and con-

clusion will be based on these variables, the research method should be quantitative (Univer-

sity of Jyväskylä 2010d). Of all the quantitative research methods (University of Jyväskylä

2010e), the best choice for this study seems to be experimental research. Experimental re-

search allows the observation and analysis of the application in a controlled environment

which will be created for this thesis. The results will be accurate, because experimental re-

search enables controlled and systematic observation of the detection application (University

of Jyväskylä 2010c).

Experimental research methods are known as hypothetico-deductive and quasi-experiment.

Hypothetico-deductive research focuses on hypotheses or behavior predictions, and the ma-

jority of the work comprises collecting evidence which either supports the hypotheses or

prove them wrong. It can be said that this kind of research is the traditional scientific method.

In a quasi-experiment, the researcher has hypotheses, but cannot control some elements out-

side the research environment, and therefore is not capable of isolating, identifying, and

controlling the variables. This means that conducting a legitimate hypothetico-deductive is

not possible. Therefore, the researcher runs a quasi-experiment instead, and operates with

the variables that can be controlled and acknowledges those that cannot be controlled. In

addition, quasi-experiment can be a viable choice, if there is an incentive to conduct the re-

search without hypotheses (Edgar and Manz 2017, 73-74). For this thesis, the hypothetico-

deductive method is the most viable method. The hypotheses are:

• The detection accuracy is satisfactory.

• The detection accuracy is not satisfactory.

These hypotheses will drive the experimentation, and the satisfactory level of accuracy will

26

be derived from similar research. These hypotheses also follow the guidelines of a good

hypothesis: they can be observed and tested, and they are clearly defined, single concept and

predictive (Edgar and Manz 2017, 219).

Other research methods do not feel as viable as experimental research does. For example,

case study is an observational method, but it is a method for studying events or situations that

have already passed. Potentially case study could be a solid choice for this kind of research,

but for this thesis there most likely would not be enough cases to study (Edgar and Manz

2017, 133-134).

5.1 Reliability and validity

When evaluating research, reliability and validity are probably the most essential factors to

take into consideration. Reliability means how consistent the analysis is and how repeatable

the measuring results are. For example, in a study like this the tests can be run multiple times

to see whether or not the output is the same on each run. If the output is the same each time,

reliability is high and if not, reliability is low. Validity means how accurately the intended

factors are measured (University of Jyväskylä 2010a).

5.2 Research environment

The research was conducted in a virtual environment for several reasons, safety being the

most important of them. Virtualization was implemented via Oracle VM VirtualBox (Oracle

2020) and operating system used in this virtual environment was Kali Linux. Kali Linux is an

open source operating system that is funded and maintained by a company called Offensive

Security. Its’ main uses lie in the field of cyber security. Kali Linux includes approximately

600 tools which are able to perform various tasks related to information security, for ex-

ample penetration testing, security research, digital forensics, security auditing and reverse

engineering. (OffSec Services Limited 2020c)

27

5.3 MSFvenom bad character analysis

Different byte combinations can be given to MSFvenom as bad charecters using the -b pa-

rameter (OffSec Services Limited 2020a). Some common bad characters were described in

section 2.1, but in this analysis every one byte combination is supplied to MSFvenom in

order to see which combinations are accepted and which are rejected. In total there are 256

possible one byte combinations. Two Python scripts were created in order to accomplish

this task, and they can be viewed in appendix A. The first script attempts to generate certain

shellcodes with each different one byte combination as a bad character. Each successfully

generated shellcode file is tagged with the used byte combination. Below is an example of a

succesfully created file tagged with the used byte combination:

x0a_linux_mipsle_reboot.c

The second script is used to check which byte combinations were accepted and which were

rejected by comparing the contents of the table which contains each one byte combination to

the byte tags of the successfully generated shellcodes.

The chosen architectures were x86, x64, MIPS, ARM, ARM 64, PowerPC, PowerPC 64 and

SPARC. For each architecture, one payload was chosen from the MSFvenom selection, and

the chosen codes were:

• x86 linux/x86/chmod

• x64 osx/x64/say

• MIPS linux/mipsle/reboot

• ARM osx/armle/vibrate

• ARM 64 linux/aarch64/shell_reverse_tcp

• PowerPC osx/ppc/shell/find_tag

• PowerPC 64 linux/ppc64/shell_find_port

• SPARC solaris/sparc/shell_find_port

After the initial bad character analysis, this thesis also examined whether or not changing

the MSFvenom input parameters such as LHOST, LPORT and RHOST affect the program

accepts or rejects one byte combinations as bad characters. LHOST stands for the listen

address, LPORT stands for the listen port and RHOST stands for the target address (OffSec

28

Services Limited 2020a). Another set of Python scripts which are available in appendix A

were written in order to accomplish this task.

The chosen architectures and payloads for LHOST tests were:

• x86 linux/x86/shell/reverse_tcp

• x64 linux/x64/shell/reverse_tcp

• MIPS linux/mipsbe/shell/reverse_tcp

• ARM osx/armle/shell_reverse_tcp

• ARM 64 linux/aarch64/shell_reverse_tcp

• PowerPC linux/ppc/shell_reverse_tcp

• PowerPC 64 linux/ppc64/shell_reverse_tcp

• SPARC bsd/sparc/shell_reverse_tcp

For LPORT and RHOST tests the ARM 64 architecture was discarded as no suitable payload

could be found. The chosen architectures and payloads for LPORT and RHOST tests were:

• x86 bsd/x86/shell_bind_tcp

• x64 bsd/x64/shell_bind_tcp

• MIPS linux/mipsle/shell_bind_tcp

• ARM linux/armle/shell/bind_tcp

• PowerPC osx/ppc/shell_bind_tcp

• PowerPC 64 linux/ppc64/shell_bind_tcp

• SPARC bsd/sparc/shell_bind_tcp

5.4 Creating the shellcode database

This process was split in two parts. The first part was to collect shellcodes in large quantities

from different sources and the second part was to add these shellcodes into a one database.

The main sources for collecting shellcodes were MSFvenom, Exploit Database and Shell-

Storm. MSFvenom, a part of the Metasploit framework, is a tool for generating payloads,

shellcode included, and encoding them (OffSec Services Limited 2020a). Exploit Database

is a collection or a repository of public exploits and corresponding vulnerable software. The

29

main purpose of Exploit Database is to help penetration testers and vulnerability researchers

in their work. The exploits are collected from direct submissions, mailing lists and other

public sources (OffSec Services Limited 2020b). Shell-Storm is a database dedicated for

shellcodes, which have been gathered via contributions. However, the shellcodes available

at the site are not typically used in real life situations, rather they are intended for study cases

(”Shell-Storm Shellcodes Database” 2020).

Shell-Storm shellcodes were downloaded directly from the website using the wget tool and

Exploit Database shellcodes were downloaded from the project’s GitHub repository (Off-

Sec Services Limited 2020d). For MSFvenom, a Python script, which can be viewed in

appendix B, was made in order to automate the process of generating multiple shellcodes.

The script reads the payload names from a text file which includes every Metasploit payload

and attempts to generate shellcodes from them. The script also checks whether a file already

exists or not, so it will waste time by overwriting previously generated shellcodes. It is a very

crude script with room for improvement, and it does not successfully create every payload in

the list, but it accomplishes what is needed for the purposes of this thesis. The problem with

this script is that it generalizes MSFvenom’s commands and parameters, and the same com-

mand may not work for every payload. The script allows creating shellcodes with or without

the MSFvenom -b parameter. The script has some predefined bad characters, but it also lets

the user enter custom bad characters. The script can edited for different shellcode formats

by changing a value of one string in the code. This script tags the filename based on which

bad character option was used. After running the script multiple times with different values

and formats, duplicate files were identified and deleted with a tool called rdfind, and then

additional examination was manually performed with the diff command. To best knowledge,

each piece of code in this set which was generated with MSFvenom should be unique.

Even though Exploit Database and Shell-Storm are valid databases, as such they were not

suitable for this thesis because they are biased towards certain, perhaps more popular archi-

tectures. This applies to MSFvenom as well because it does not support each architecture

equally (OffSec Services Limited 2020a), meaning that there are more shellcodes available

for some architectures and less for others. Using these resources to train machine learning

systems without adjusting the distribution of architectures would most likely create a class

30

imbalance problem as discussed in section 4.1.

The primary resources for the database were Exploit Database and Shell-Storm, and only the

shellcodes which clearly stated the target architecture were selected, as manually inspecting

the ones that didn’t was too large of a task for the scope of this thesis. The shellcodes from

these two sources were combined into a one single database whose structure can be seen in

table 1. From this table it can be seen that the selection of these two sources is very biased

towards the x86 architecture.

Architecture Quantity

x86 1014

x86-64 191

x64 7

ARM 83

PowerPC 40

MIPS 31

SPARC 26

SuperH 8

CRISv32 2

RISC-V 64 1

Table 1. Architectures and the number of shellcodes after adding them from Exploit Database

and Shell-Storm

To combat this imbalance issue, the shellcodes generated with MSFvenom were added to

this emerging thesis database. The structure of the final database can be seen in table 2.

This final database is still biased towards x86 but not as heavily as previously. This database

contains shellcodes in various formats such as C, ELF and raw bytes. Using this database as

such to train machine learning systems would most likely cause the class imbalance problem

described in section 4.1. However, this database can be used to craft balanced datasets which

then can be used in training without having to worry about the class imbalance problem.

31

Architecture Quantity

x86 4033

x64 2852

x86-64 191

ARM 1592

ARM 64 666

StrongARM 3

MIPS 1758

MIPS 64 3

PowerPC 1796

PowerPC 64 1303

PowerPC e500v2 3

SPARC 1787

SuperH 8

CRISv32 2

RISC-V 64 1

Table 2. Final shellcode database

5.5 Testing a machine learning based ISA detection system

The application under examination is called ISAdetect (Kairajärvi, Costin, and Hämäläinen

2020b) and it was downloaded and installed from the project’s GitHub repository (Kairajärvi,

Costin, and Hämäläinen 2020a). However, the actual testing was done with a live demo1.

This was due to a scikit-learn version mismatch between the trained classifiers and the ver-

sion that this tool uses. Probably because of this, the GitHub version of the application gave

slightly different results than the live demo. In addition, this could have made a negative

impact on the reliability and validity of the results. Hence, the assumption was made that

the web-based live demo is more reliable and the testing was conducted with that version

of the tool. According to Kairajärvi, Costin, and Hämäläinen (2020b), currently ISAdetect

1. https://isadetect.com/

32

supports the following architectures: alpha, amd64, arm64, armel, armhf, hppa, i386, ia64,

m68k, mips, mips64el, mipsel, powerpc, powerpcspe, powerpc64, powerpc64el, riscv, s390,

s390x, sh4, sparc, sparc64 and x32. In addition, currently ISAdetect accepts shellcodes

in raw byte and ELF formats (Kairajärvi, Costin, and Hämäläinen 2020b). The shellcodes

for the testing were selected from the database with these architectures and requirements in

mind as there was no point in testing unsupported architectures and formats. Each piece of

shellcode was tested multiple times in order to see if the application would give the same

result on each run. ISAdetect can be set to analyze code-only sections, full binaries with

code and data sections and small fragments of less than 2000 bytes (Kairajärvi, Costin, and

Hämäläinen 2020b). From these options the code-only and fragment options were tested.

Code-only is the default option and fragment was included because some of the test files are

so small. In both tests the used classifier was random forest as it is the default option and also

the best performing classifier (Kairajärvi, Costin, and Hämäläinen 2020b). After these tests

the performance of each classifier was tested with a smaller set of shellcodes. In addition

to random forest, these classifiers are 1 nearest neighbor, 3 nearest neighbor, decision tree,

naïve Bayes, neural net and SVM/SMO (Kairajärvi, Costin, and Hämäläinen 2020b). Based

on the papers by Clemens (2015) and Kairajärvi, Costin, and Hämäläinen (2020b), it was

decided that 90% would be an acceptable accuracy for the detection.

The size of the shellcode files vary from 16 bytes to 1,5 megabytes. However, the file size

does not necessarily reflect the size of the payload. In some cases it might be smaller than the

actual file size. Also, the goal was to mostly use unique files in the testing, so the shellcodes

created in section 5.3 were not used. Table 3 shows the structure of the test set. These

shellcodes are either full ELF files or raw binary executable files. The file extension reveals

the format.

33

Architecture Quantity

ARM 17

ARM 64 7

MIPS 46

MIPS 64 3

PowerPC 30

PowerPC 64 13

SPARC 23

Table 3. Shellcode collection for running tests

34

6 Results

In this chapter, the results of the detection and the MSFvenom bad character analysis are

presented. For the sake of clarity, the presentation of the results is divided into several

sections. The results of the code-only tests can be viewed in section 6.2 and the results of the

fragment option tests can be viewed in section 6.3. The MSFvenom bad character analysis

results can be found in section 6.6.

6.1 Detection results

The detection results are presented in tables and there is one table for each architecture.

In each table, the first column lists the shellcode that is being tested, the second column

shows the shellcode file size in bytes, the third and fourth columns show the original and

detected architectures, the fifth and sixth colums show the original and detected word sizes,

the seventh and the eighth columns show the original and detected endiannesses, the ninth

column show the prediction probability and finally, the tenth column show whether or not

the instruction set architecture was detected correctly.

35

6.2 Results from testing shellcodes with the code-only option

Shellcode File

size

Architecture Detected

archi-

tecture

Word

size

Detected

word

size

Endianness Detected

endian-

ness

Prediction

proba-

bility

Correct

no_bc_linux_armbe_meterpreter_reverse_http.elf 1022588 arm arm 32 32 big little 0.55 no

no_bc_linux_armbe_meterpreter_reverse_https.elf 1022588 arm arm 32 32 big little 0.55 no

no_bc_linux_armbe_meterpreter_reverse_tcp.elf 1022588 arm arm 32 32 big little 0.55 no

no_bc_linux_armbe_shell_bind_tcp 118 arm m68k 32 32 big big 0.16 no

no_bc_linux_armle_adduser 119 arm mips 32 64 little little 0.16 no

no_bc_linux_armle_adduser.elf 203 arm ia64 32 64 little little 0.15 no

no_bc_linux_armle_meterpreter_bind_tcp 232 arm arm 32 32 little little 0.38 yes

no_bc_linux_armle_meterpreter_bind_tcp.elf 316 arm arm 32 32 little little 0.31 yes

no_bc_linux_armle_meterpreter_reverse_http.elf 1022588 arm arm 32 32 little little 0.89 yes

no_bc_linux_armle_meterpreter_reverse_https.elf 1022588 arm arm 32 32 little little 0.89 yes

no_bc_linux_armle_meterpreter_reverse_tcp 260 arm arm 32 32 little little 0.35 yes

no_bc_linux_armle_meterpreter_reverse_tcp.elf 344 arm arm 32 32 little little 0.28 yes

no_bc_osx_armle_execute_bind_tcp 248 arm arm 32 32 little little 0.19 yes

no_bc_osx_armle_execute_reverse_tcp 184 arm arm 32 32 little little 0.18 yes

no_bc_osx_armle_vibrate 16 arm arm 32 32 little little 0.24 yes

xff_linux_armle_shell_reverse_tcp 172 arm arm 32 32 little little 0.18 yes

xff_linux_armle_shell_reverse_tcp.elf 256 arm arm 32 32 little little 0.24 yes

no_bc_apple_ios_aarch64_shell_reverse_tcp 152 arm64 arm64 64 64 little little 0.24 yes

no_bc_linux_aarch64_meterpreter_reverse_http.elf 1092000 arm64 arm64 64 64 little little 0.82 yes

no_bc_linux_aarch64_meterpreter_reverse_https.elf 1092000 arm64 arm64 64 64 little little 0.82 yes

no_bc_linux_aarch64_meterpreter_reverse_tcp 212 arm64 arm64 64 64 little little 0.27 yes

no_bc_linux_aarch64_meterpreter_reverse_tcp.elf 332 arm64 arm64 64 64 little little 0.25 yes

x0dxff_linux_aarch64_shell_reverse_tcp 152 arm64 arm64 64 64 little little 0.23 yes

x0dxff_linux_aarch64_shell_reverse_tcp.elf 272 arm64 ia64 64 64 little little 0.2 no

Table 4. Detection results for ARM and ARM 64 using the code-only option

36

Shellcode File

size

Architecture Detected

archi-

tecture

Word

size

Detected

word

size

Endianness Detected

endian-

ness

Prediction

proba-

bility

Correct

no_bc_linux_mipsbe_meterpreter_reverse_http.elf 1460700 mips mips 32 32 big big 0.81 yes

no_bc_linux_mipsbe_meterpreter_reverse_https.elf 1460700 mips mips 32 32 big big 0.81 yes

no_bc_linux_mipsbe_meterpreter_reverse_tcp 272 mips ia64 32 64 big little 0.11 no

no_bc_linux_mipsbe_meterpreter_reverse_tcp.elf 356 mips sparc 32 32 big big 0.13 no

no_bc_linux_mipsbe_reboot 32 mips arm64 32 64 big little 0.1 no

no_bc_linux_mipsbe_reboot.elf 116 mips ia64 32 64 big little 0.13 no

no_bc_linux_mipsbe_shell_bind_tcp 232 mips mips 32 32 big big 0.33 yes

no_bc_linux_mipsbe_shell_bind_tcp.elf 316 mips mips 32 32 big big 0.37 yes

no_bc_linux_mipsle_meterpreter_reverse_http.elf 1463172 mips mips 32 32 little little 0.84 yes

no_bc_linux_mipsle_meterpreter_reverse_https.elf 1463172 mips mips 32 32 little little 0.84 yes

no_bc_linux_mipsle_meterpreter_reverse_tcp 272 mips ia64 32 64 little little 0.11 no

no_bc_linux_mipsle_meterpreter_reverse_tcp.elf 356 mips sparc 32 32 little big 0.13 no

no_bc_linux_mipsle_reboot 32 mips arm64 32 64 little little 0.1 no

no_bc_linux_mipsle_reboot.elf 116 mips amd64 32 64 little little 0.132 no

no_bc_linux_mipsle_shell_bind_tcp 232 mips mips 32 32 little little 0.23 yes

no_bc_linux_mipsle_shell_bind_tcp.elf 316 mips mips 32 32 little little 0.25 yes

x00_linux_mipsbe_meterpreter_reverse_tcp 376 mips m68k 32 32 big big 0.17 no

x00_linux_mipsbe_meterpreter_reverse_tcp.elf 460 mips m68k 32 32 big big 0.22 no

x00_linux_mipsbe_shell_reverse_tcp 376 mips m68k 32 32 big big 0.18 no

x00_linux_mipsbe_shell_reverse_tcp.elf 460 mips sparc 32 32 big big 0.1 no

x00_linux_mipsle_meterpreter_reverse_tcp 376 mips m68k 32 32 little big 0.18 no

x00_linux_mipsle_meterpreter_reverse_tcp.elf 460 mips m68k 32 32 little big 0.13 no

x00_linux_mipsle_shell_reverse_tcp 376 mips m68k 32 32 little big 0.13 no

x00_linux_mipsle_shell_reverse_tcp.elf 460 mips riscv 32 64 little little 0.16 no

x00x0d_linux_mipsbe_meterpreter_reverse_tcp 380 mips m68k 32 32 big big 0.18 no

x00x0d_linux_mipsbe_meterpreter_reverse_tcp.elf 464 mips m68k 32 32 big big 0.21 no

x00x0d_linux_mipsbe_shell_bind_tcp 340 mips armhf 32 32 big little 0.17 no

x00x0d_linux_mipsbe_shell_bind_tcp.elf 424 mips sparc 32 64 big big 0.15 no

x00x0d_linux_mipsbe_shell_reverse_tcp 380 mips sparc 32 64 big big 0.13 no

x00x0d_linux_mipsbe_shell_reverse_tcp.elf 464 mips m68k 32 32 big big 0.12 no

x00x0d_linux_mipsle_meterpreter_reverse_tcp 380 mips m68k 32 32 little big 0.11 no

x00x0d_linux_mipsle_meterpreter_reverse_tcp.elf 464 mips sparc 32 32 little big 0.19 no

x00x0d_linux_mipsle_shell_bind_tcp 340 mips sparc 32 32 little big 0.12 no

x00x0d_linux_mipsle_shell_bind_tcp.elf 424 mips alpha 32 64 little little 0.16 no

x00x0d_linux_mipsle_shell_reverse_tcp 380 mips riscv 32 64 little little 0.12 no

x00x0d_linux_mipsle_shell_reverse_tcp.elf 464 mips m68k 32 32 little big 0.14 no

x0d_linux_mipsbe_shell_bind_tcp 340 mips m68k 32 32 big big 0.11 no

x0d_linux_mipsbe_shell_bind_tcp.elf 424 mips i386 32 32 big little 0.12 no

x0d_linux_mipsle_shell_bind_tcp 340 mips m68k 32 32 little big 0.13 no

x0d_linux_mipsle_shell_bind_tcp.elf 424 mips m68k 32 32 little big 0.11 no

x5c_linux_mipsbe_meterpreter_reverse_tcp 376 mips m68k 32 32 big big 0.15 no

x5c_linux_mipsbe_shell_bind_tcp 336 mips i386 32 32 big little 0.13 no

x5c_linux_mipsbe_shell_reverse_tcp 376 mips riscv 32 64 big little 0.13 no

x5c_linux_mipsle_meterpreter_reverse_tcp 376 mips arm64 32 64 little little 0.15 no

x5c_linux_mipsle_shell_bind_tcp 336 mips m68k 32 32 little big 0.12 no

x5c_linux_mipsle_shell_reverse_tcp 376 mips ia64 32 64 little little 0.14 no

no_bc_linux_mips64_meterpreter_reverse_http.elf 1568856 mips64 mips64 64 64 big little 0.49 no

no_bc_linux_mips64_meterpreter_reverse_https.elf 1568856 mips64 mips64 64 64 big little 0.49 no

no_bc_linux_mips64_meterpreter_reverse_tcp.elf 1568856 mips64 mips64 64 64 big little 0.49 no

Table 5. Detection results for MIPS and MIPS 64 using the code-only option

37

Shellcode File

size

Architecture Detected

archi-

tecture

Word

size

Detected

word

size

Endianness Detected

endian-

ness

Prediction

proba-

bility

Correct

no_bc_aix_ppc_shell_interact 56 ppc sparc 32 32 big big 0.15 no

no_bc_aix_ppc_shell_reverse_tcp 204 ppc m68k 32 32 big big 0.16 no

no_bc_linux_ppc_meterpreter_reverse_http.elf 1210840 ppc ppc 32 32 big big 0.47 yes

no_bc_linux_ppc_meterpreter_reverse_https.elf 1210840 ppc ppc 32 32 big big 0.47 yes

no_bc_linux_ppc_meterpreter_reverse_tcp.elf 1210840 ppc ppc 32 32 big big 0.47 yes

no_bc_linux_ppc_shell_find_port 171 ppc sparc 32 64 big big 0.13 no

no_bc_linux_ppc_shell_reverse_tcp 183 ppc m68k 32 32 big big 0.09 no

no_bc_osx_ppc_shell_reverse_tcp 100 ppc ppc 32 64 big big 0.2 no

x00_linux_ppc_shell_find_port 171 ppc m68k 32 32 big big 0.12 no

x00_osx_ppc_shell_bind_tcp 228 ppc i386 32 32 big little 0.11 no

x00_osx_ppc_shell_reverse_tcp 176 ppc m68k 32 32 big big 0.19 no

x00x0a_aix_ppc_shell_find_port 220 ppc sparc 32 32 big big 0.13 no

x00x0a_linux_ppc_shell_reverse_tcp 260 ppc mips64 32 64 big little 0.16 no

x00x0a_osx_ppc_shell_find_tag 76 ppc m68k 32 32 big big 0.11 no

x00x0d_osx_ppc_shell_bind_tcp 228 ppc i386 32 32 big little 0.15 no

x00x0d_osx_ppc_shell_reverse_tcp 176 ppc m68k 32 32 big big 0.13 no

x0a_aix_ppc_shell_find_port 220 ppc sparc 32 32 big big 0.13 no

x0a_aix_ppc_shell_reverse_tcp 280 ppc armhf 32 32 big little 0.1 no

x0a_linux_ppc_shell_reverse_tcp 260 ppc arm64 32 64 big little 0.11 no

x0a_osx_ppc_shell_find_tag 76 ppc m68k 32 32 big big 0.12 no

x0ax0d_aix_ppc_shell_find_port 220 ppc sparc 32 32 big big 0.15 no

x0ax0d_aix_ppc_shell_reverse_tcp 280 ppc i386 32 32 big little 0.19 no

x0ax0d_linux_ppc_shell_find_port 171 ppc m68k 32 32 big big 0.13 no

x0ax0d_osx_ppc_shell_bind_tcp 228 ppc i386 32 32 big little 0.15 no

x0ax0d_osx_ppc_shell_reverse_tcp 176 ppc i386 32 32 big little 0.13 no

x0d_osx_ppc_shell_find_tag 76 ppc m68k 32 32 big big 0.12 no

x5c_aix_ppc_shell_reverse_tcp 280 ppc m68k 32 32 big big 0.13 no

x5c_linux_ppc_shell_bind_tcp 300 ppc armhf 32 32 big little 0.14 no

x5c_linux_ppc_shell_find_port 171 ppc m68k 32 32 big big 0.12 no

x5c_linux_ppc_shell_reverse_tcp 260 ppc arm64 32 64 big little 0.12 no

no_bc_linux_ppc64le_meterpreter_reverse_http.elf 1169208 ppc64 ppc64 64 64 little little 0.93 yes

no_bc_linux_ppc64le_meterpreter_reverse_https.elf 1169208 ppc64 ppc64 64 64 little little 0.93 yes

no_bc_linux_ppc64le_meterpreter_reverse_tcp.elf 1169208 ppc64 ppc64 64 64 little little 0.93 yes

no_bc_linux_ppc64_shell_bind_tcp 223 ppc64 arm64 64 64 little little 0.13 no

no_bc_linux_ppc64_shell_find_port 171 ppc64 arm64 64 64 little little 0.13 no

no_bc_linux_ppc64_shell_reverse_tcp 183 ppc64 sparc 64 64 little big 0.11 no

x00_linux_ppc64_shell_find_port 171 ppc64 arm64 64 64 little little 0.14 no

x00x0a_linux_ppc64_shell_find_port 171 ppc64 arm64 64 64 little little 0.13 no

x00x0d_linux_ppc64_shell_find_port 171 ppc64 arm64 64 64 little little 0.11 no

x0a_linux_ppc64_shell_find_port 171 ppc64 arm64 64 64 little little 0.13 no

x0ax0d_linux_ppc64_shell_find_port 171 ppc64 arm64 64 64 little little 0.13 no

x0d_linux_ppc64_shell_find_port 171 ppc64 arm64 64 64 little little 0.12 no

x5c_linux_ppc64_shell_find_port 171 ppc64 arm64 64 64 little little 0.13 no

Table 6. Detection results for PowerPC and PowerPC 64 using the code-only option

38

Shellcode File

size

Architecture Detected

archi-

tecture

Word

size

Detected

word

size

Endianness Detected

endian-

ness

Prediction

proba-

bility

Correct

no_bc_bsd_sparc_shell_bind_tcp 164 sparc sparc 32 32 big big 0.34 yes

no_bc_bsd_sparc_shell_reverse_tcp 128 sparc sparc 32 32 big big 0.32 yes

no_bc_solaris_sparc_shell_bind_tcp 180 sparc sparc 32 32 big big 0.34 yes

no_bc_solaris_sparc_shell_find_port 136 sparc sparc 32 32 big big 0.45 yes

no_bc_solaris_sparc_shell_reverse_tcp 144 sparc sparc 32 32 big big 0.35 yes

x00_bsd_sparc_shell_reverse_tcp 180 sparc m68k 32 32 big big 0.17 no

x00_solaris_sparc_shell_bind_tcp 232 sparc m68k 32 32 big big 0.15 no

x00_solaris_sparc_shell_find_port 188 sparc sparc 32 32 big big 0.14 yes

x00_solaris_sparc_shell_reverse_tcp 196 sparc sh4 32 32 big little 0.13 no

x00x0a_bsd_sparc_shell_reverse_tcp 180 sparc armhf 32 32 big little 0.18 no

x00x0a_solaris_sparc_shell_bind_tcp 232 sparc armhf 32 32 big little 0.17 no

x00x0a_solaris_sparc_shell_find_port 188 sparc sh4 32 32 big little 0.15 no

x00x0a_solaris_sparc_shell_reverse_tcp 196 sparc sparc 32 32 big big 0.15 yes

x00x0d_bsd_sparc_shell_reverse_tcp 180 sparc riscv 32 64 big little 0.13 no

x00x0d_solaris_sparc_shell_bind_tcp 232 sparc riscv 32 64 big little 0.18 no

x00x0d_solaris_sparc_shell_find_port 188 sparc armhf 32 32 big little 0.13 no

x00x0d_solaris_sparc_shell_reverse_tcp 196 sparc m68k 32 32 big big 0.14 no

x0a_solaris_sparc_shell_find_port 188 sparc m68k 32 32 big big 0.15 no

x0ax0d_solaris_sparc_shell_find_port 188 sparc arm64 32 64 big little 0.15 no

x0d_solaris_sparc_shell_find_port 188 sparc sparc 32 32 big big 0.14 yes

x5c_solaris_sparc_shell_bind_tcp 232 sparc sparc 32 32 big big 0.17 yes

x5c_solaris_sparc_shell_find_port 136 sparc sparc 32 32 big big 0.44 yes

x5c_solaris_sparc_shell_reverse_tcp 196 sparc sparc 32 32 big big 0.13 yes

Table 7. Detection results for SPARC using the code-only option

39

6.3 Results from testing shellcodes with the fragment option

Shellcode File

size

Architecture Detected

archi-

tecture

Word

size

Detected

word

size

Endianness Detected

endian-

ness

Prediction

proba-

bility

Correct

no_bc_linux_armbe_meterpreter_reverse_http.elf 1022588 arm arm 32 32 big little 0.726 no

no_bc_linux_armbe_meterpreter_reverse_https.elf 1022588 arm arm 32 32 big little 0.726 no

no_bc_linux_armbe_meterpreter_reverse_tcp.elf 1022588 arm arm 32 32 big little 0.726 no

no_bc_linux_armbe_shell_bind_tcp 118 arm sh4 32 32 big little 0.723 no

no_bc_linux_armle_adduser 119 arm sh4 32 32 little little 0.935 no

no_bc_linux_armle_adduser.elf 203 arm ia64 32 64 little little 0.582 no

no_bc_linux_armle_meterpreter_bind_tcp 232 arm arm 32 32 little little 0.991 yes

no_bc_linux_armle_meterpreter_bind_tcp.elf 316 arm ia64 32 64 little little 0.902 no

no_bc_linux_armle_meterpreter_reverse_http.elf 1022588 arm arm 32 32 little little 0.739 yes

no_bc_linux_armle_meterpreter_reverse_https.elf 1022588 arm arm 32 32 little little 0.739 yes

no_bc_linux_armle_meterpreter_reverse_tcp 260 arm arm 32 32 little little 0.917 yes

no_bc_linux_armle_meterpreter_reverse_tcp.elf 344 arm ia64 32 64 little little 0.949 no

no_bc_osx_armle_execute_bind_tcp 248 arm arm 32 32 little little 0.989 yes

no_bc_osx_armle_execute_reverse_tcp 184 arm arm 32 32 little little 0.983 yes

no_bc_osx_armle_vibrate 16 arm armhf 32 32 little little 0.978 no

xff_linux_armle_shell_reverse_tcp 172 arm arm 32 32 little little 0.587 yes

xff_linux_armle_shell_reverse_tcp.elf 256 arm ia64 32 64 little little 0.979 no

no_bc_apple_ios_aarch64_shell_reverse_tcp 152 arm64 arm64 64 64 little little 0.538 yes

no_bc_linux_aarch64_meterpreter_reverse_http.elf 1092000 arm64 arm64 64 64 little little 0.797 yes

no_bc_linux_aarch64_meterpreter_reverse_https.elf 1092000 arm64 arm64 64 64 little little 0.797 yes

no_bc_linux_aarch64_meterpreter_reverse_tcp 212 arm64 arm64 64 64 little little 0.996 yes

no_bc_linux_aarch64_meterpreter_reverse_tcp.elf 332 arm64 ia64 64 64 little little 0.934 no

x0dxff_linux_aarch64_shell_reverse_tcp 152 arm64 arm64 64 64 little little 0.679 yes

x0dxff_linux_aarch64_shell_reverse_tcp.elf 272 arm64 ia64 64 64 little little 0.999 no

Table 8. Detection results for ARM and ARM 64 using the fragment option

40

Shellcode File

size

Architecture Detected

archi-

tecture

Word

size

Detected

word

size

Endianness Detected

endian-

ness

Prediction

proba-

bility

Correct

no_bc_linux_mipsbe_meterpreter_reverse_http.elf 1460700 mips mips 32 32 big big 0.876 yes

no_bc_linux_mipsbe_meterpreter_reverse_https.elf 1460700 mips mips 32 32 big big 0.876 yes

no_bc_linux_mipsbe_meterpreter_reverse_tcp 272 mips mips 32 32 big big 0.331 yes

no_bc_linux_mipsbe_meterpreter_reverse_tcp.elf 356 mips mips 32 32 big big 0.308 yes

no_bc_linux_mipsbe_reboot 32 mips sh4 32 32 big little 0.695 no

no_bc_linux_mipsbe_reboot.elf 116 mips ia64 32 64 big little 0.985 no

no_bc_linux_mipsbe_shell_bind_tcp 232 mips m68k 32 32 big big 0.638 no

no_bc_linux_mipsbe_shell_bind_tcp.elf 316 mips mips 32 32 big big 0.2 yes

no_bc_linux_mipsle_meterpreter_reverse_http.elf 1463172 mips mips 32 32 little little 0.880 yes

no_bc_linux_mipsle_meterpreter_reverse_https.elf 1463172 mips mips 32 32 little little 0.880 yes

no_bc_linux_mipsle_meterpreter_reverse_tcp 272 mips mips 32 32 little little 0.332 yes

no_bc_linux_mipsle_meterpreter_reverse_tcp.elf 356 mips mips 32 32 little little 0.357 yes

no_bc_linux_mipsle_reboot 32 mips sh4 32 32 little little 0.695 no

no_bc_linux_mipsle_reboot.elf 116 mips ia64 32 64 little little 0.985 no

no_bc_linux_mipsle_shell_bind_tcp 232 mips m68k 32 32 little big 0.705 no

no_bc_linux_mipsle_shell_bind_tcp.elf 316 mips mips64 32 64 little little 0.208 no

x00_linux_mipsbe_meterpreter_reverse_tcp 376 mips sh4 32 32 big little 0.976 no

x00_linux_mipsbe_meterpreter_reverse_tcp.elf 460 mips sh4 32 32 big little 0.578 no

x00_linux_mipsbe_shell_reverse_tcp 376 mips hppa 32 32 big big 0.266 no

x00_linux_mipsbe_shell_reverse_tcp.elf 460 mips armhf 32 32 big little 0.504 no

x00_linux_mipsle_meterpreter_reverse_tcp 376 mips sh4 32 32 little little 0.89 no

x00_linux_mipsle_meterpreter_reverse_tcp.elf 460 mips sh4 32 32 little little 0.459 no

x00_linux_mipsle_shell_reverse_tcp 376 mips riscv 32 64 little little 0.857 no

x00_linux_mipsle_shell_reverse_tcp.elf 460 mips riscv 32 64 little little 0.394 no

x00x0d_linux_mipsbe_meterpreter_reverse_tcp 380 mips sh4 32 32 big little 0.94 no

x00x0d_linux_mipsbe_meterpreter_reverse_tcp.elf 464 mips m68k 32 32 big big 0.339 no

x00x0d_linux_mipsbe_shell_bind_tcp 340 mips sh4 32 32 big little 0.921 no

x00x0d_linux_mipsbe_shell_bind_tcp.elf 424 mips arm64 32 64 big little 0.123 no

x00x0d_linux_mipsbe_shell_reverse_tcp 380 mips sh4 32 32 big little 0.719 no

x00x0d_linux_mipsbe_shell_reverse_tcp.elf 464 mips sh4 32 32 big little 0.283 no

x00x0d_linux_mipsle_meterpreter_reverse_tcp 380 mips sh4 32 32 little little 0.847 no

x00x0d_linux_mipsle_meterpreter_reverse_tcp.elf 464 mips arm64 32 64 little little 0.155 no

x00x0d_linux_mipsle_shell_bind_tcp 340 mips sh4 32 32 little little 0.896 no

x00x0d_linux_mipsle_shell_bind_tcp.elf 424 mips arm64 32 64 little little 0.231 no

x00x0d_linux_mipsle_shell_reverse_tcp 380 mips sh4 32 32 little little 0.855 no

x00x0d_linux_mipsle_shell_reverse_tcp.elf 464 mips ppc 32 32 little big 0.124 no

x0d_linux_mipsbe_shell_bind_tcp 340 mips sh4 32 32 big little 0.630 no

x0d_linux_mipsbe_shell_bind_tcp.elf 424 mips sh4 32 32 big little 0.253 no

x0d_linux_mipsle_shell_bind_tcp 340 mips sh4 32 32 little little 0.950 no

x0d_linux_mipsle_shell_bind_tcp.elf 424 mips alpha 32 64 little little 0.151 no

x5c_linux_mipsbe_meterpreter_reverse_tcp 376 mips sh4 32 32 big little 0.998 no

x5c_linux_mipsbe_shell_bind_tcp 336 mips riscv 32 64 big little 0.601 no

x5c_linux_mipsbe_shell_reverse_tcp 376 mips ppcspe 32 32 big big 0.805 no

x5c_linux_mipsle_meterpreter_reverse_tcp 376 mips sh4 32 32 little little 0.581 no

x5c_linux_mipsle_shell_bind_tcp 336 mips arm64 32 64 little little 0.590 no

x5c_linux_mipsle_shell_reverse_tcp 376 mips armhf 32 32 little little 0.954 no

no_bc_linux_mips64_meterpreter_reverse_http.elf 1568856 mips64 ia64 64 64 big little 0.485 no

no_bc_linux_mips64_meterpreter_reverse_https.elf 1568856 mips64 ia64 64 64 big little 0.485 no

no_bc_linux_mips64_meterpreter_reverse_tcp.elf 1568856 mips64 ia64 64 64 big little 0.485 no

Table 9. Detection results for MIPS and MIPS 64 using the fragment option

41

Shellcode File

size

Architecture Detected

archi-

tecture

Word

size

Detected

word

size

Endianness Detected

endian-

ness

Prediction

proba-

bility

Correct

no_bc_aix_ppc_shell_interact 56 ppc m68k 32 32 big big 0.288 no

no_bc_aix_ppc_shell_reverse_tcp 204 ppc ppcspe 32 32 big big 0.981 no

no_bc_linux_ppc_meterpreter_reverse_http.elf 1210840 ppc ppc 32 32 big big 0.874 yes

no_bc_linux_ppc_meterpreter_reverse_https.elf 1210840 ppc ppc 32 32 big big 0.874 yes

no_bc_linux_ppc_meterpreter_reverse_tcp.elf 1210840 ppc ppc 32 32 big big 0.874 yes

no_bc_linux_ppc_shell_find_port 171 ppc ppc64 32 64 big little 0.855 no

no_bc_linux_ppc_shell_reverse_tcp 183 ppc ppc64 32 64 big little 0.783 no

no_bc_osx_ppc_shell_reverse_tcp 100 ppc ppc 32 32 big big 0.396 yes

x00_linux_ppc_shell_find_port 171 ppc ppc64 32 64 big little 0.848 no

x00_osx_ppc_shell_bind_tcp 228 ppc sh4 32 32 big little 0.902 no

x00_osx_ppc_shell_reverse_tcp 176 ppc sh4 32 32 big little 0.618 no

x00x0a_aix_ppc_shell_find_port 220 ppc ppcspe 32 32 big big 0.871 no

x00x0a_linux_ppc_shell_reverse_tcp 260 ppc sh4 32 32 big little 0.835 no

x00x0a_osx_ppc_shell_find_tag 76 ppc ppcspe 32 32 big big 0.84 no

x00x0d_osx_ppc_shell_bind_tcp 228 ppc armhf 32 32 big big 0.455 no

x00x0d_osx_ppc_shell_reverse_tcp 176 ppc sh4 32 32 big little 0.694 no

x0a_aix_ppc_shell_find_port 220 ppc ppcspe 32 32 big big 0.816 no

x0a_aix_ppc_shell_reverse_tcp 280 ppc armhf 32 32 big little 0.291 no

x0a_linux_ppc_shell_reverse_tcp 260 ppc sh4 32 32 big little 0.762 no

x0a_osx_ppc_shell_find_tag 76 ppc ppcspe 32 32 big big 0.849 no

x0ax0d_aix_ppc_shell_find_port 220 ppc ppcspe 32 32 big big 0.814 no

x0ax0d_aix_ppc_shell_reverse_tcp 280 ppc sh4 32 32 big little 0.9 no

x0ax0d_linux_ppc_shell_find_port 171 ppc ppc64 32 64 big little 0.846 no

x0ax0d_osx_ppc_shell_bind_tcp 228 ppc armhf 32 32 big little 0.308 no

x0ax0d_osx_ppc_shell_reverse_tcp 176 ppc risv 32 64 big little 0.917 no

x0d_osx_ppc_shell_find_tag 76 ppc ppcspe 32 32 big big 0.88 no

x5c_aix_ppc_shell_reverse_tcp 280 ppc sh4 32 32 big little 0.596 no

x5c_linux_ppc_shell_bind_tcp 300 ppc sh4 32 32 big little 0.721 no

x5c_linux_ppc_shell_find_port 171 ppc ppc64 32 64 big little 0.87 no

x5c_linux_ppc_shell_reverse_tcp 260 ppc riscv 32 64 big little 0.754 no

no_bc_linux_ppc64le_meterpreter_reverse_http.elf 1169208 ppc64 ppc64 64 64 little big 0.907 no

no_bc_linux_ppc64le_meterpreter_reverse_https.elf 1169208 ppc64 ppc64 64 64 little big 0.907 no

no_bc_linux_ppc64le_meterpreter_reverse_tcp.elf 1169208 ppc64 ppc64 64 64 little big 0.907 no

no_bc_linux_ppc64_shell_bind_tcp 223 ppc64 ppc64 64 64 little little 0.985 yes

no_bc_linux_ppc64_shell_find_port 171 ppc64 ppc64 64 64 little little 0.954 yes

no_bc_linux_ppc64_shell_reverse_tcp 183 ppc64 ppc64 64 64 little little 0.957 yes

x00_linux_ppc64_shell_find_port 171 ppc64 ppc64 64 64 little little 0.950 yes

x00x0a_linux_ppc64_shell_find_port 171 ppc64 ppc64 64 64 little little 0.945 yes

x00x0d_linux_ppc64_shell_find_port 171 ppc64 ppc64 64 64 little little 0.947 yes

x0a_linux_ppc64_shell_find_port 171 ppc64 ppc64 64 64 little little 0.950 yes

x0ax0d_linux_ppc64_shell_find_port 171 ppc64 ppc64 64 64 little little 0.936 yes

x0d_linux_ppc64_shell_find_port 171 ppc64 ppc64 64 64 little little 0.947 yes

x5c_linux_ppc64_shell_find_port 171 ppc64 ppc64 64 64 little little 0.951 yes

Table 10. Detection results for PowerPC and PowerPC 64 using the fragment option

42

Shellcode File

size

Architecture Detected

archi-

tecture

Word

size

Detected

word

size

Endianness Detected

endian-

ness

Prediction

proba-

bility

Correct

no_bc_bsd_sparc_shell_bind_tcp 164 sparc sparc 32 32 big big 0.998 yes

no_bc_bsd_sparc_shell_reverse_tcp 128 sparc sparc 32 32 big big 0.999 yes

no_bc_solaris_sparc_shell_bind_tcp 180 sparc sparc 32 32 big big 0.998 yes

no_bc_solaris_sparc_shell_find_port 136 sparc sparc 32 32 big big 0.986 yes

no_bc_solaris_sparc_shell_reverse_tcp 144 sparc sparc 32 32 big big 0.998 yes

x00_bsd_sparc_shell_reverse_tcp 180 sparc sh4 32 32 big little 0.922 no

x00_solaris_sparc_shell_bind_tcp 232 sparc sh4 32 32 big little 0.814 no

x00_solaris_sparc_shell_find_port 188 sparc sh4 32 32 big little 0.86 no

x00_solaris_sparc_shell_reverse_tcp 196 sparc sh4 32 32 big little 0.94 no

x00x0a_bsd_sparc_shell_reverse_tcp 180 sparc sh4 32 32 big little 0.609 no

x00x0a_solaris_sparc_shell_bind_tcp 232 sparc sh4 32 32 big little 0.794 no

x00x0a_solaris_sparc_shell_find_port 188 sparc sh4 32 32 big little 0.810 no

x00x0a_solaris_sparc_shell_reverse_tcp 196 sparc sh4 32 32 big little 0.920 no

x00x0d_bsd_sparc_shell_reverse_tcp 180 sparc sh4 32 32 big little 0.875 no

x00x0d_solaris_sparc_shell_bind_tcp 232 sparc sh4 32 32 big little 0.728 no

x00x0d_solaris_sparc_shell_find_port 188 sparc sh4 32 32 big little 0.88 no

x00x0d_solaris_sparc_shell_reverse_tcp 196 sparc armhf 32 32 big little 0.552 no

x0a_solaris_sparc_shell_find_port 188 sparc sh4 32 32 big little 0.882 no

x0ax0d_solaris_sparc_shell_find_port 188 sparc sh4 32 32 big little 0.785 no

x0d_solaris_sparc_shell_find_port 188 sparc sh4 32 32 big little 0.767 no

x5c_solaris_sparc_shell_bind_tcp 232 sparc sh4 32 32 big little 0.816 no

x5c_solaris_sparc_shell_find_port 136 sparc sparc 32 32 big big 0.986 yes

x5c_solaris_sparc_shell_reverse_tcp 196 sparc sh4 32 32 big little 0.846 no

Table 11. Detection results for SPARC using the fragment option

6.4 Analyzing the results of the scans

The overall detection accuracy in the code-only tests found in section 6.2 was 30,22%. For

files under 2000 bytes the detection accuracy was 23,53%. It was also checked how well

the program performs with different architectures. The performance was it its’ best with

the ARM architecture as the detection accuracy with these shellcodes was 70,83%. With

the SPARC shellcodes the detection accuracy was 47,83%. With MIPS and PPC the per-

formance was considerably worse as the detection accuracy with the MIPS shellcodes was

16,33% and 13,95% with the PowerPC shellcodes. One possibly noteworthy factor is that

the program fared a lot better with the shellcodes which were generated without the MS-

Fvenom’s -b parameter. When this parameter is used to tell the program to avoid certain

characters, by default it attempts to encode the generated shellcode as well (OffSec Services

Limited 2020a). These encoded shellcodes made a huge negative impact on the detection

accuracy of ISAdetect. When using the code-only option, the accuracy for the unencoded

shellcodes was 56,90% and only 11.11% for the encoded shellcodes. Table 12 shows these

results in a clear and simplified format.

43

Target of scan Accuracy

Every file in set 30,22%

Files under 2000 bytes in size 23,53%

Unencoded files 56,90%

Encoded files 11,11%

ARM 70,83%

MIPS 16,33%

PowerPC 13,95%

SPARC 47,83%

Table 12. Overall detection results with the code-only option

The overall detection accuracy in the fragment tests found in section 6.3 was 29,50%. For

files under 2000 bytes the detection accuracy was 25,51%, so it is almost the same as in

the code-only tests but still slightly better. More testing is required in order to find out

whether or not the fragment option performs considerably better with files under 2000 bytes

than the code-only scanning option. Similarly to the code-only option, the fragment option

performed the best with ARM architecture as the detection accuracy with these shellcodes

was 50,00%. The second best performance was with the PowerPC architecture, here the

detection accuracy was 32,56%. With the SPARC shellcodes the accuracy was 26,09% and

finally, 18,37% with the MIPS shellcodes. Similarly to the code-only scans, when using

the fragment option there was a huge difference in detection accuracy between encoded and

unencoded shellcodes. With the fragment option, the detection accuracy for the unencoded

shellcodes was 53,45% and 12,35% for the encoded shellcodes. Table 13 shows these results

in a clear and simplified format.

44

Target of scan Accuracy

Every file in set 29,50%

Files under 2000 bytes in size 25,51%

Unencoded files 53,45%

Encoded files 12,35%

ARM 50%

MIPS 18,37%

PowerPC 32,56%

SPARC 26,09%

Table 13. Overall detection results with the fragment option

Another factor to take into consideration is that the vast majority of the ARM architecture

shellcodes are unencoded. As noted before, ISAdetect seems to handle unencoded shellcodes

significantly better, so it is possible that the success with the ARM shellcodes is in part

caused by this. Most likely further research with this matter would be a worthwhile thing to

do.

6.5 Results from testing the classifiers

A set of 30 shellcodes was selected for testing the classifiers. The random forest classifier

correctly detected the instruction set architecture from these shellcodes with the ratio of

46,67%. The other classifiers were tested in order to see whether they can beat this level

of accuracy or does random forest preserve its’ status as the highest performing classifier

(Kairajärvi, Costin, and Hämäläinen 2020b).

45

Shellcode File

size

Architecture Detected

archi-

tecture

Word

size

Detected

word

size

Endianness Detected

endian-

ness

Prediction

proba-

bility

Correct

no_bc_linux_armbe_shell_bind_tcp 118 arm m68k 32 32 big big 0.16 no

no_bc_linux_armle_adduser 119 arm mips 32 64 little little 0.16 no

no_bc_linux_armle_adduser.elf 203 arm ia64 32 64 little little 0.15 no

no_bc_linux_armle_meterpreter_reverse_tcp 260 arm arm 32 32 little little 0.35 yes

no_bc_osx_armle_vibrate 16 arm arm 32 32 little little 0.24 yes

xff_linux_armle_shell_reverse_tcp.elf 256 arm arm 32 32 little little 0.24 yes

no_bc_linux_aarch64_meterpreter_reverse_https.elf 1092000 arm64 arm64 64 64 little little 0.82 yes

no_bc_linux_aarch64_meterpreter_reverse_tcp.elf 332 arm64 arm64 64 64 little little 0.25 yes

x0dxff_linux_aarch64_shell_reverse_tcp 152 arm64 arm64 64 64 little little 0.23 yes

x0dxff_linux_aarch64_shell_reverse_tcp.elf 272 arm64 ia64 64 64 little little 0.2 no

no_bc_linux_mipsbe_shell_bind_tcp 232 mips mips 32 32 big big 0.33 yes

no_bc_linux_mipsle_meterpreter_reverse_http.elf 1463172 mips mips 32 32 little little 0.84 yes

no_bc_linux_mipsle_shell_bind_tcp.elf 316 mips mips 32 32 little little 0.25 yes

x00x0d_linux_mipsbe_shell_reverse_tcp.elf 464 mips m68k 32 32 big big 0.12 no

x00x0d_linux_mipsle_shell_bind_tcp 340 mips sparc 32 32 little big 0.12 no

x5c_linux_mipsle_meterpreter_reverse_tcp 376 mips arm64 32 64 little little 0.15 no

no_bc_linux_mips64_meterpreter_reverse_https.elf 1568856 mips64 mips64 64 64 big little 0.49 no

no_bc_linux_ppc_meterpreter_reverse_tcp.elf 1210840 ppc ppc 32 32 big big 0.47 yes

x00x0d_osx_ppc_shell_reverse_tcp 176 ppc m68k 32 32 big big 0.13 no

x0a_linux_ppc_shell_reverse_tcp 260 ppc arm64 32 64 big little 0.11 no

x0d_osx_ppc_shell_find_tag 76 ppc m68k 32 32 big big 0.12 no

no_bc_linux_ppc64_shell_reverse_tcp 183 ppc64 sparc 64 64 little big 0.11 no

no_bc_linux_ppc64le_meterpreter_reverse_http.elf 1169208 ppc64 ppc64 64 64 little little 0.93 yes

x5c_linux_ppc64_shell_find_port 171 ppc64 arm64 64 64 little little 0.13 no

no_bc_bsd_sparc_shell_reverse_tcp 128 sparc sparc 32 32 big big 0.32 yes

x00_solaris_sparc_shell_find_port 188 sparc sparc 32 32 big big 0.14 yes

x00_solaris_sparc_shell_reverse_tcp 196 sparc sh4 32 32 big little 0.13 no

x00x0d_solaris_sparc_shell_bind_tcp 232 sparc riscv 32 64 big little 0.18 no

x0ax0d_solaris_sparc_shell_find_port 188 sparc arm64 32 64 big little 0.15 no

x5c_solaris_sparc_shell_bind_tcp 232 sparc sparc 32 32 big big 0.17 yes

Table 14. Detection results for random forest classifier

46

Shellcode File

size

Architecture Detected

archi-

tecture

Word

size

Detected

word

size

Endianness Detected

endian-

ness

Prediction

proba-

bility

Correct

no_bc_linux_armbe_shell_bind_tcp 118 arm armhf 32 32 big little 1 no

no_bc_linux_armle_adduser 119 arm sh4 32 32 little little 1 no

no_bc_linux_armle_adduser.elf 203 arm ia64 32 64 little little 1 no

no_bc_linux_armle_meterpreter_reverse_tcp 260 arm arm 32 32 little little 1 yes

no_bc_osx_armle_vibrate 16 arm armhf 32 32 little little 1 no

xff_linux_armle_shell_reverse_tcp.elf 256 arm sparc 32 64 little big 1 no

no_bc_linux_aarch64_meterpreter_reverse_https.elf 1092000 arm64 arm64 64 64 little little 1 yes

no_bc_linux_aarch64_meterpreter_reverse_tcp.elf 332 arm64 ia64 64 64 little little 1 no

x0dxff_linux_aarch64_shell_reverse_tcp 152 arm64 ppc 64 32 little big 1 no

x0dxff_linux_aarch64_shell_reverse_tcp.elf 272 arm64 ia64 64 64 little little 1 no

no_bc_linux_mipsbe_shell_bind_tcp 232 mips sh4 32 32 big little 1 no

no_bc_linux_mipsle_meterpreter_reverse_http.elf 1463172 mips mips 32 32 little little 1 yes

no_bc_linux_mipsle_shell_bind_tcp.elf 316 mips m68k 32 32 little big 1 no

x00x0d_linux_mipsbe_shell_reverse_tcp.elf 464 mips m68k 32 32 big big 1 no

x00x0d_linux_mipsle_shell_bind_tcp 340 mips sh4 32 32 little little 1 no

x5c_linux_mipsle_meterpreter_reverse_tcp 376 mips riscv 32 64 little little 1 no

no_bc_linux_mips64_meterpreter_reverse_https.elf 1568856 mips64 ia64 64 64 big little 1 no

no_bc_linux_ppc_meterpreter_reverse_tcp.elf 1210840 ppc ppc 32 32 big big 1 yes

x00x0d_osx_ppc_shell_reverse_tcp 176 ppc sh4 32 32 big little 1 no

x0a_linux_ppc_shell_reverse_tcp 260 ppc sh4 32 32 big little 1 no

x0d_osx_ppc_shell_find_tag 76 ppc sh4 32 32 big little 1 no

no_bc_linux_ppc64_shell_reverse_tcp 183 ppc64 sh4 64 32 little little 1 no

no_bc_linux_ppc64le_meterpreter_reverse_http.elf 1169208 ppc64 ppc64 64 64 little big 1 no

x5c_linux_ppc64_shell_find_port 171 ppc64 sh4 64 32 little little 1 no

no_bc_bsd_sparc_shell_reverse_tcp 128 sparc sparc 32 32 big big 1 yes

x00_solaris_sparc_shell_find_port 188 sparc sh4 32 32 big little 1 no

x00_solaris_sparc_shell_reverse_tcp 196 sparc sh4 32 32 big little 1 no

x00x0d_solaris_sparc_shell_bind_tcp 232 sparc sh4 32 32 big little 1 no

x0ax0d_solaris_sparc_shell_find_port 188 sparc sh4 32 32 big little 1 no

x5c_solaris_sparc_shell_bind_tcp 232 sparc sh4 32 32 big little 1 no

Table 15. Detection results for 1 nearest neighbor classifier

The 1 nearest neighbor classifier detected the instruction set architecture from this set of

shellcodes with the accuracy of 16,67%. This classifier gave a very high prediction proba-

bility regardless of whether the prediction was correct or not.

47

Shellcode File

size

Architecture Detected

archi-

tecture

Word

size

Detected

word

size

Endianness Detected

endian-

ness

Prediction

proba-

bility

Correct

no_bc_linux_armbe_shell_bind_tcp 118 arm armhf 32 32 big little 0.667 no

no_bc_linux_armle_adduser 119 arm sh4 32 32 little little 1 no

no_bc_linux_armle_adduser.elf 203 arm ia64 32 64 little little 1 no

no_bc_linux_armle_meterpreter_reverse_tcp 260 arm arm 32 32 little little 1 yes

no_bc_osx_armle_vibrate 16 arm armhf 32 32 little little 1 no

xff_linux_armle_shell_reverse_tcp.elf 256 arm ia64 32 64 little little 0.667 no

no_bc_linux_aarch64_meterpreter_reverse_https.elf 1092000 arm64 arm64 64 64 little little 1 yes

no_bc_linux_aarch64_meterpreter_reverse_tcp.elf 332 arm64 ia64 64 64 little little 1 no

x0dxff_linux_aarch64_shell_reverse_tcp 152 arm64 arm64 64 64 little little 0.667 yes

x0dxff_linux_aarch64_shell_reverse_tcp.elf 272 arm64 ia64 64 64 little little 1 no

no_bc_linux_mipsbe_shell_bind_tcp 232 mips sh4 32 32 big little 1 no

no_bc_linux_mipsle_meterpreter_reverse_http.elf 1463172 mips mips 32 32 little little 0.667 yes

no_bc_linux_mipsle_shell_bind_tcp.elf 316 mips m68k 32 32 little big 1 no

x00x0d_linux_mipsbe_shell_reverse_tcp.elf 464 mips m68k 32 32 big big 0.667 no

x00x0d_linux_mipsle_shell_bind_tcp 340 mips sh4 32 32 little little 1 no

x5c_linux_mipsle_meterpreter_reverse_tcp 376 mips riscv 32 64 little little 1 no

no_bc_linux_mips64_meterpreter_reverse_https.elf 1568856 mips64 ia64 64 64 big little 1 no

no_bc_linux_ppc_meterpreter_reverse_tcp.elf 1210840 ppc ppc 32 32 big big 1 yes

x00x0d_osx_ppc_shell_reverse_tcp 176 ppc sh4 32 32 big little 1 no

x0a_linux_ppc_shell_reverse_tcp 260 ppc sh4 32 32 big little 1 no

x0d_osx_ppc_shell_find_tag 76 ppc sh4 32 32 big little 1 no

no_bc_linux_ppc64_shell_reverse_tcp 183 ppc64 sh4 64 32 little little 1 no

no_bc_linux_ppc64le_meterpreter_reverse_http.elf 1169208 ppc64 ppc64 64 64 little big 0.667 no

x5c_linux_ppc64_shell_find_port 171 ppc64 sh4 64 32 little little 1 no

no_bc_bsd_sparc_shell_reverse_tcp 128 sparc sparc 32 32 big big 0.667 yes

x00_solaris_sparc_shell_find_port 188 sparc sh4 32 32 big little 1 no

x00_solaris_sparc_shell_reverse_tcp 196 sparc sh4 32 32 big little 1 no

x00x0d_solaris_sparc_shell_bind_tcp 232 sparc sh4 32 32 big little 1 no

x0ax0d_solaris_sparc_shell_find_port 188 sparc sh4 32 32 big little 1 no

x5c_solaris_sparc_shell_bind_tcp 232 sparc sh4 32 32 big little 1 no

Table 16. Detection results for 3 nearest neighbor classifier

The 3 nearest neighbor detected the instruction set architecture correctly with the accuracy

of 20%. Prediction probability was high throughout the tests while occasionally dipping to

0.667.

48

Shellcode File

size

Architecture Detected

archi-

tecture

Word

size

Detected

word

size

Endianness Detected

endian-

ness

Prediction

proba-

bility

Correct

no_bc_linux_armbe_shell_bind_tcp 118 arm x32 32 32 big little 1 no

no_bc_linux_armle_adduser 119 arm x32 32 32 little little 1 no

no_bc_linux_armle_adduser.elf 203 arm sh4 32 32 little little 1 no

no_bc_linux_armle_meterpreter_reverse_tcp 260 arm riscv 32 64 little little 1 no

no_bc_osx_armle_vibrate 16 arm sparc 32 64 little big 1 no

xff_linux_armle_shell_reverse_tcp.elf 256 arm ia64 32 64 little little 1 no

no_bc_linux_aarch64_meterpreter_reverse_https.elf 1092000 arm64 arm64 64 64 little little 1 yes

no_bc_linux_aarch64_meterpreter_reverse_tcp.elf 332 arm64 ia64 64 64 little little 1 no

x0dxff_linux_aarch64_shell_reverse_tcp 152 arm64 sparc 64 32 little big 1 no

x0dxff_linux_aarch64_shell_reverse_tcp.elf 272 arm64 ia64 64 64 little little 1 no

no_bc_linux_mipsbe_shell_bind_tcp 232 mips sparc 32 64 big big 1 no

no_bc_linux_mipsle_meterpreter_reverse_http.elf 1463172 mips mips 32 32 little little 1 yes

no_bc_linux_mipsle_shell_bind_tcp.elf 316 mips mips 32 32 little little 1 yes

x00x0d_linux_mipsbe_shell_reverse_tcp.elf 464 mips arm64 32 64 big little 1 no

x00x0d_linux_mipsle_shell_bind_tcp 340 mips sh4 32 32 little little 1 no

x5c_linux_mipsle_meterpreter_reverse_tcp 376 mips sh4 32 32 little little 1 no

no_bc_linux_mips64_meterpreter_reverse_https.elf 1568856 mips64 ia64 64 64 big little 1 no

no_bc_linux_ppc_meterpreter_reverse_tcp.elf 1210840 ppc ppcspe 32 32 big big 1 no

x00x0d_osx_ppc_shell_reverse_tcp 176 ppc i386 32 32 big little 1 no

x0a_linux_ppc_shell_reverse_tcp 260 ppc ppc64 32 64 big big 1 no

x0d_osx_ppc_shell_find_tag 76 ppc riscv 32 64 big little 1 no

no_bc_linux_ppc64_shell_reverse_tcp 183 ppc64 sparc 64 64 little big 1 no

no_bc_linux_ppc64le_meterpreter_reverse_http.elf 1169208 ppc64 ppc64 64 64 little little 1 yes

x5c_linux_ppc64_shell_find_port 171 ppc64 sparc 64 64 little big 1 no

no_bc_bsd_sparc_shell_reverse_tcp 128 sparc sparc 32 32 big big 1 yes

x00_solaris_sparc_shell_find_port 188 sparc sparc 32 32 big big 1 yes

x00_solaris_sparc_shell_reverse_tcp 196 sparc x32 32 32 big little 1 no

x00x0d_solaris_sparc_shell_bind_tcp 232 sparc sparc 32 64 big big 1 no

x0ax0d_solaris_sparc_shell_find_port 188 sparc hppa 32 32 big big 1 no

x5c_solaris_sparc_shell_bind_tcp 232 sparc amd64 32 64 big little 1 no

Table 17. Detection results for decision tree classifier

The decision tree classifier managed an accuracy of 20% as well. Prediction probability was

1 on both correct and incorrect predictions.

49

Shellcode File

size

Architecture Detected

archi-

tecture

Word

size

Detected

word

size

Endianness Detected

endian-

ness

Prediction

proba-

bility

Correct

no_bc_linux_armbe_shell_bind_tcp 118 arm armhf 32 32 big little 1 no

no_bc_linux_armle_adduser 119 arm armhf 32 32 little little 1 no

no_bc_linux_armle_adduser.elf 203 arm armhf 32 32 little little 1 no

no_bc_linux_armle_meterpreter_reverse_tcp 260 arm armhf 32 32 little little 1 no

no_bc_osx_armle_vibrate 16 arm armhf 32 32 little little 1 no

xff_linux_armle_shell_reverse_tcp.elf 256 arm armhf 32 32 little little 1 no

no_bc_linux_aarch64_meterpreter_reverse_https.elf 1092000 arm64 arm64 64 64 little little 1 yes

no_bc_linux_aarch64_meterpreter_reverse_tcp.elf 332 arm64 arm64 64 64 little little 0.999 yes

x0dxff_linux_aarch64_shell_reverse_tcp 152 arm64 sh4 64 32 little little 1 no

x0dxff_linux_aarch64_shell_reverse_tcp.elf 272 arm64 sparc 64 32 little big 1 no

no_bc_linux_mipsbe_shell_bind_tcp 232 mips mips 32 32 big big 1 yes

no_bc_linux_mipsle_meterpreter_reverse_http.elf 1463172 mips mips 32 32 little little 1 yes

no_bc_linux_mipsle_shell_bind_tcp.elf 316 mips mips 32 32 little little 1 yes

x00x0d_linux_mipsbe_shell_reverse_tcp.elf 464 mips riscv 32 64 big little 1 no

x00x0d_linux_mipsle_shell_bind_tcp 340 mips sh4 32 32 little little 1 no

x5c_linux_mipsle_meterpreter_reverse_tcp 376 mips armhf 32 32 little little 1 no

no_bc_linux_mips64_meterpreter_reverse_https.elf 1568856 mips64 m68k 64 32 big big 1 no

no_bc_linux_ppc_meterpreter_reverse_tcp.elf 1210840 ppc ppc 32 32 big big 1 yes

x00x0d_osx_ppc_shell_reverse_tcp 176 ppc armhf 32 32 big little 1 no

x0a_linux_ppc_shell_reverse_tcp 260 ppc armhf 32 32 big little 1 no

x0d_osx_ppc_shell_find_tag 76 ppc armhf 32 32 big little 1 no

no_bc_linux_ppc64_shell_reverse_tcp 183 ppc64 m68k 64 32 little big 1 no

no_bc_linux_ppc64le_meterpreter_reverse_http.elf 1169208 ppc64 ppc64 64 64 little little 1 yes

x5c_linux_ppc64_shell_find_port 171 ppc64 m68k 64 32 little big 1 no

no_bc_bsd_sparc_shell_reverse_tcp 128 sparc armhf 32 32 big little 1 no

x00_solaris_sparc_shell_find_port 188 sparc armhf 32 32 big little 1 no

x00_solaris_sparc_shell_reverse_tcp 196 sparc armhf 32 32 big little 1 no

x00x0d_solaris_sparc_shell_bind_tcp 232 sparc armhf 32 32 big little 1 no

x0ax0d_solaris_sparc_shell_find_port 188 sparc armhf 32 32 big little 1 no

x5c_solaris_sparc_shell_bind_tcp 232 sparc armhf 32 32 big little 0.982 no

Table 18. Detection results for naïve Bayes classifier

When the naïve Bayes classifier was used, the detection accuracy was 23,33%. This classifier

gave a high prediction probability as well on both correct and incorrect detections.

50

Shellcode File

size

Architecture Detected

archi-

tecture

Word

size

Detected

word

size

Endianness Detected

endian-

ness

Prediction

proba-

bility

Correct

no_bc_linux_armbe_shell_bind_tcp 118 arm alpha 32 64 big little 0.681 no

no_bc_linux_armle_adduser 119 arm m68k 32 32 little big 0.993 no

no_bc_linux_armle_adduser.elf 203 arm ppcspe 32 32 little big 0.984 no

no_bc_linux_armle_meterpreter_reverse_tcp 260 arm arm 32 32 little little 0.962 yes

no_bc_osx_armle_vibrate 16 arm arm 32 32 little little 0.72 yes

xff_linux_armle_shell_reverse_tcp.elf 256 arm arm 32 32 little little 0.89 yes

no_bc_linux_aarch64_meterpreter_reverse_https.elf 1092000 arm64 arm64 64 64 little little 0.608 yes

no_bc_linux_aarch64_meterpreter_reverse_tcp.elf 332 arm64 sh4 64 32 little little 0.999 no

x0dxff_linux_aarch64_shell_reverse_tcp 152 arm64 m68k 64 32 little big 0.993 no

x0dxff_linux_aarch64_shell_reverse_tcp.elf 272 arm64 m68k 64 32 little big 0.991 no

no_bc_linux_mipsbe_shell_bind_tcp 232 mips mips 32 32 big little 0.586 no

no_bc_linux_mipsle_meterpreter_reverse_http.elf 1463172 mips mips 32 32 little little 0.862 yes

no_bc_linux_mipsle_shell_bind_tcp.elf 316 mips amd64 32 64 little little 0.993 no

x00x0d_linux_mipsbe_shell_reverse_tcp.elf 464 mips mips64 32 64 big little 0.989 no

x00x0d_linux_mipsle_shell_bind_tcp 340 mips amd64 32 64 little little 0.974 no

x5c_linux_mipsle_meterpreter_reverse_tcp 376 mips m68k 32 32 little big 0.993 no

no_bc_linux_mips64_meterpreter_reverse_https.elf 1568856 mips64 mips64 64 64 big little 0.731 no

no_bc_linux_ppc_meterpreter_reverse_tcp.elf 1210840 ppc ppcspe 32 32 big big 0.996 no

x00x0d_osx_ppc_shell_reverse_tcp 176 ppc ppc 32 32 big big 0.945 yes

x0a_linux_ppc_shell_reverse_tcp 260 ppc sh4 32 32 big little 0.960 no

x0d_osx_ppc_shell_find_tag 76 ppc arm64 32 64 big little 0.993 no

no_bc_linux_ppc64_shell_reverse_tcp 183 ppc64 m68k 64 32 little big 0.984 no

no_bc_linux_ppc64le_meterpreter_reverse_http.elf 1169208 ppc64 armhf 64 32 little little 0.931 no

x5c_linux_ppc64_shell_find_port 171 ppc64 m68k 64 32 little big 0.980 no

no_bc_bsd_sparc_shell_reverse_tcp 128 sparc sparc 32 32 big big 0.954 yes

x00_solaris_sparc_shell_find_port 188 sparc armhf 32 32 big little 0.553 no

x00_solaris_sparc_shell_reverse_tcp 196 sparc armhf 32 32 big little 0.993 no

x00x0d_solaris_sparc_shell_bind_tcp 232 sparc armhf 32 32 big little 0.645 no

x0ax0d_solaris_sparc_shell_find_port 188 sparc ppcspe 32 32 big big 0.998 no

x5c_solaris_sparc_shell_bind_tcp 232 sparc armhf 32 32 big little 0.446 no

Table 19. Detection results for neural net classifier

Similarly to the naïve Bayes, the neural net classifier achieved the accuracy of 23,33% as

well. In this case as well the probability of prediction was quite high throughout the tests

regardless of whether the shellcode’s instruction set architecture was detected correctly or

not.

51

Shellcode File

size

Architecture Detected

archi-

tecture

Word

size

Detected

word

size

Endianness Detected

endian-

ness

Prediction

proba-

bility

Correct

no_bc_linux_armbe_shell_bind_tcp 118 arm sh4 32 32 big little 0.719 no

no_bc_linux_armle_adduser 119 arm sh4 32 32 little little 0.933 no

no_bc_linux_armle_adduser.elf 203 arm ia64 32 64 little little 0.585 no

no_bc_linux_armle_meterpreter_reverse_tcp 260 arm arm 32 32 little little 0.917 yes

no_bc_osx_armle_vibrate 16 arm armhf 32 32 little little 0.977 no

xff_linux_armle_shell_reverse_tcp.elf 256 arm ia64 32 64 little little 0.98 no

no_bc_linux_aarch64_meterpreter_reverse_https.elf 1092000 arm64 arm64 64 64 little little 0.801 yes

no_bc_linux_aarch64_meterpreter_reverse_tcp.elf 332 arm64 ia64 64 64 little little 0.933 no

x0dxff_linux_aarch64_shell_reverse_tcp 152 arm64 arm64 64 64 little little 0.681 yes

x0dxff_linux_aarch64_shell_reverse_tcp.elf 272 arm64 ia64 64 64 little little 0.999 no

no_bc_linux_mipsbe_shell_bind_tcp 232 mips m68k 32 32 big big 0.645 no

no_bc_linux_mipsle_meterpreter_reverse_http.elf 1463172 mips mips 32 32 little little 0.877 yes

no_bc_linux_mipsle_shell_bind_tcp.elf 316 mips mips64 32 64 little little 0.2 no

x00x0d_linux_mipsbe_shell_reverse_tcp.elf 464 mips sh4 32 32 big little 0.281 no

x00x0d_linux_mipsle_shell_bind_tcp 340 mips sh4 32 32 little little 0.895 no

x5c_linux_mipsle_meterpreter_reverse_tcp 376 mips sh4 32 32 little little 0.58 no

no_bc_linux_mips64_meterpreter_reverse_https.elf 1568856 mips64 ia64 64 64 big little 0.488 no

no_bc_linux_ppc_meterpreter_reverse_tcp.elf 1210840 ppc ppc 32 32 big big 0.877 yes

x00x0d_osx_ppc_shell_reverse_tcp 176 ppc sh4 32 32 big little 0.768 no

x0a_linux_ppc_shell_reverse_tcp 260 ppc sh4 32 32 big little 0.759 no

x0d_osx_ppc_shell_find_tag 76 ppc ppcspe 32 32 big big 0.879 no

no_bc_linux_ppc64_shell_reverse_tcp 183 ppc64 ppc64 64 64 little little 0.957 yes

no_bc_linux_ppc64le_meterpreter_reverse_http.elf 1169208 ppc64 ppc64 64 64 little big 0.912 no

x5c_linux_ppc64_shell_find_port 171 ppc64 ppc64 64 64 little little 0.951 yes

no_bc_bsd_sparc_shell_reverse_tcp 128 sparc sparc 32 32 big big 0.999 yes

x00_solaris_sparc_shell_find_port 188 sparc sh4 32 32 big little 0.859 no

x00_solaris_sparc_shell_reverse_tcp 196 sparc sh4 32 32 big little 0.939 no

x00x0d_solaris_sparc_shell_bind_tcp 232 sparc sh4 32 32 big little 0.755 no

x0ax0d_solaris_sparc_shell_find_port 188 sparc sh4 32 32 big little 0.8 no

x5c_solaris_sparc_shell_bind_tcp 232 sparc sh4 32 32 big little 0.822 no

Table 20. Detection results for SVM/SMO classifier

Finally, the SVM/SMO classifier correctly detected the instruction set architecture with the

accuracy of 26,67% so in these tests it was the highest performing classifier after random

forest. Prediction probability was lower than with the other classifiers but still relatively

high in most cases and it did not seem to matter whether the prediction was correct or not.

6.6 Results of MSFvenom bad character analysis

This section presents the results of the MSFvenom bad character analyses in several tables,

which show the architecture, the amount of accepted and rejected byte combinations, and

the used parameters. The rejected byte combinations for each test can be viewed in detail in

appendix C. The used payloads for each test can be seen in section 5.3. In this section, it was

not inspected whether or not each generated shellcode is unique as the point was to examine

52

which byte combinations are accepted and which are not.

Architecture Number of accepted bytes Number of rejected bytes

x86 256 0

x64 255 1

MIPS 248 8

ARM 241 15

ARM 64 218 38

PowerPC 238 18

PowerPC 64 188 68

SPARC 241 15

Table 21. Results of MSFvenom bad character analysis

Based on this test, most one byte combinations were accepted and the number of rejected

bytes was low for almost every architecture. The only exceptions are ARM 64 with 38

rejections and PowerPC 64 with 68 rejections.

Architecture LHOST Number

of ac-

cepted

bytes

Number

of re-

jected

bytes

LHOST Number

of ac-

cepted

bytes

Number

of re-

jected

bytes

x86 192.168.1.1 255 1 10.0.0.1 255 1

x64 192.168.1.1 254 2 10.0.0.1 254 2

MIPS 192.168.1.1 231 25 10.0.0.1 231 25

ARM 192.168.1.1 209 47 10.0.0.1 210 46

ARM 64 192.168.1.1 219 37 10.0.0.1 219 37

PowerPC 192.168.1.1 238 18 10.0.0.1 238 18

PowerPC 64 192.168.1.1 182 74 10.0.0.1 181 75

SPARC 192.168.1.1 247 9 10.0.0.1 247 9

Table 22. MSFvenom LHOST analysis

53

Based on this test, it seems that changing the LHOST parameter in shellcodes that create

a reverse shell connection makes minimal difference. The tests were conducted with two

different LHOST values: 192.168.1.1 and 10.0.0.1. In most cases, the number of accepted

bytes and the number of rejected bytes is the same. The only exceptions are the ARM

architecture and the PowerPC 64 architecture. Changing the LHOST parameter in the ARM

tests caused one less rejection and in the PowerPC 64 tests it caused one more rejection.

Architecture RHOST Number

of ac-

cepted

bytes

Number

of re-

jected

bytes

RHOST Number

of ac-

cepted

bytes

Number

of re-

jected

bytes

x86 - 256 0 124.173.232.109 256 0

x64 - 254 2 124.173.232.109 254 2

MIPS - 237 19 124.173.232.109 237 19

ARM - 205 51 124.173.232.109 205 51

PowerPC - 233 23 124.173.232.109 233 23

PowerPC 64 - 183 73 124.173.232.109 183 73

SPARC - 246 10 124.173.232.109 246 10

Table 23. MSFvenom RHOST analysis

MSFvenom payloads which execute a bind shell have an optional RHOST parameter which

was tested in part of the thesis. First, the RHOST parameter was not used at all and then

another set of shellcodes were generated with the RHOST parameter enabled and the value

was a random IP address: 124.173.232.109. Based on this experiment, changing or enabling

the RHOST parameter does not make a significant difference when generating shellcodes

with different one byte combinations as bad characters. Mostly the number of accepted and

rejected bytes is the same, except for the MIPS architecture and the SPARC architecture.

Changing the RHOST parameter resulted in one more rejection in the MIPS tests and one

less rejection in the SPARC tests.

54

Architecture LPORT Number

of ac-

cepted

bytes

Number

of re-

jected

bytes

LPORT Number

of ac-

cepted

bytes

Number

of re-

jected

bytes

x86 1234 256 0 10 256 0

x64 1234 254 2 10 254 2

MIPS 1234 237 19 10 236 20

ARM 1234 206 50 10 206 50

PowerPC 1234 233 23 10 233 23

PowerPC 64 1234 182 74 10 182 74

SPARC 1234 245 11 10 246 10

Table 24. MSFvenom LPORT analysis

In this test, the used payloads were the same as in the previous test, but the tested parameter

was different. This time the focus was on the LPORT parameter, and two different values

were used in the tests: 1234 and 10. Based on this test, changing the LPORT parameter

makes very little difference in the shellcode creation. In most cases the number of accepted

and rejected bytes are the same with MIPS and SPARC being the only exceptions. Changing

the LPORT value caused one more rejection for the MIPS architecture and one less rejection

for the SPARC architecture.

Next, this thesis will present some statistics about the bytes which caused the most rejections.

The 10 most problematic bytes are listed in the following five tables. Table 25 presents the

overall 10 most problematic bytes, table 26 presents the 10 most problematic bytes in the

first MSFvenom bad character analysis, table 27 presents the 10 most problematic bytes in

the LHOST analysis, table 28 presents the 10 most problematic bytes in the RHOST analysis

and finally table 29 presents the 10 most problematic bytes in the LPORT analysis.

55

Byte Count

0xff 39

0x01 30

0x02 30

0x40 28

0xe0 28

0x04 26

0x03 24

0x20 20

0x2f 20

0x05 18

Table 25. Overall, the 10 most problematic bytes

Byte Count

0x04 5

0x01 4

0x02 4

0x03 4

0x40 4

0x21 3

0x08 3

0xe1 3

0xf9 3

0xff 3

Table 26. The 10 most problematic bytes in MSFvenom bad character analysis

56

Byte Count

0xff 12

0x01 10

0x02 10

0xe0 10

0x03 8

0x04 8

0x40 8

0x80 8

0xc0 8

0x0b 6

Table 27. The 10 most problematic bytes in LHOST analysis

Byte Count

0xff 12

0x01 8

0x02 8

0x40 8

0xe0 8

0x04 6

0x05 6

0x0c 6

0x20 6

0x2f 6

Table 28. The 10 most problematic bytes in RHOST analysis

57

Byte Count

0xff 12

0x01 8

0x02 8

0x40 8

0xe0 8

0x04 7

0x05 6

0x0c 6

0x20 6

0x2f 6

Table 29. The 10 most problematic bytes in LPORT analysis

58

7 Discussion

The research problem in this thesis was divided into two parts. The first one was to create

a representable real-world database of shellcodes and the second one was to see how accu-

rately can a machine learning based application detect the instruction set architecture from

the shellcodes of this database. The two main research question were:

RQ1: How to create a significant and representative real-world database of shellcodes?

RQ2: How accurately can a machine learning based ISA identification system detect the

correct CPU architecture, word size and endianness from short shellcodes?

Also, this thesis had three sub-questions which were:

SQ1: How to automate the creation of the shellcode database?

SQ2: How can machine learning based ISA identification systems be improved?

SQ3: Which different one byte combinations MSFvenom accepts or rejects as bad charac-

ters, and what are the most problematic bytes?

The answer to RQ1 is:

Without skill to personally create shellcodes from scratch, a database like this can be created

by using various credible and high-quality sources in the Internet such as Exploit Database

and Shell-Storm as well as using dedicated software such as MSFvenom to generate shell-

codes. MSFvenom can be executed multiple times with different parameters in order to

create slightly different shellcodes from the same payload. After collecting enough shell-

codes from these sources, they can be sorted by target architecture and then these collections

can be further molded up to the point where each collection contains the same amount of

shellcodes as the other.

The answer to RQ2 is:

Based on the tests performed in this thesis, a machine learning based ISA detection system

can detect the instruction set architecture from short shellcodes with the accuracy of about

30%. Two different detection options were tested, in the first the program was set to scan

code-only sections of the shellcode files and in the second the program was set to scan

small fragments. The detection accuracy in the code-only tests was 30,22% and 29,5% in

59

the fragment tests. For smaller files of under 2000 bytes in size, the detection accuracy

with the code-only option was 23,53% and 25,51% with the fragment option. In addition,

based on the tests conducted in this thesis, it is easier to detect the instuction set architecture

from unencoded shellcode files than from encoded ones. The code-only option reached

the accuracy of 56,90% with unencoded shellcodes and 11,11% with encoded files. The

fragment option achieved the accuracy of 53,45% with unencoded shellcodes and 12,35%

with encoded ones.

The answer to SQ1 is:

In this thesis, the process of generating shellcodes with MSFvenom was automated by creat-

ing a Python program which runs MSFvenom in a loop. The other phases of collection were

not automated as it was easy enough to download the Exploit Database codes the project’s

GitHub repository and use wget to download every piece of shellcode from Shell-Storm.

However, the potential of automation was not fully realized in this thesis. It is most likely

possible to automate the whole process of collecting shellcodes and creating the database by

programming a tool which downloads shellcodes from given sources and then sorts them by

architecture for example. The same tool could also automatically maintain this database.

The answer to SQ2 is:

Based on the findings of this thesis, and the answer to RQ2, one deduction is that machine

learning based systems can be improved by specifically training them to recognize and detect

the desired objects, which in the case of this thesis are shellcodes, in the form they are usually

encountered in real-world situations. Bell (2014) notes that machine learning systems which

use supervised learning can be improved by improving the classifiers. In the case of this

thesis, this can be achieved by manually providing the correct ISA for each shellcode so that

the program can learn to recognize it more accurately (Bell 2014, 3).

The answer to SQ3 is:

Based on the tests conducted in this thesis, MSFvenom accepts most one byte combinations

as bad characters. In most cases, the number of rejected byte combinations was relatively low

in the tests performed in this thesis. Generally, in all tests the number of rejected bytes was

the lowest with x86, x64 and SPARC architectures and the highest with ARM, ARM 64 and

PowerPC 64 architectures. When generating shellcodes with different one byte combinations

60

as bad characters, the impact of changing different parameters such as local IP address, target

IP address or local port number was minimal. Based on the experimentation conducted in

this thesis, it seems that at least these aforementioned parameters can be configured relatively

freely when generating MSFvenom shellcodes with bad characters. The number of accepted

and rejected bytes are listed in section 6.6 and the rejected byte combinations for each test

can be viewed in detail in appendix C. Overall the top 10 most problematic bytes in the tests

conducted in this thesis were 0xff, 0x01, 0x02, 0x40, 0xe0, 0x04, 0x03, 0x20, 0x2f and

0x05.

The application which was tested in this thesis represents the state-of-the-art and is called

ISAdetect. ISAdetect’s dataset comprises ISO files, DEB files, ELF files and ELF code

sections whose minimum size is 4000 bytes, and it has been trained with this data as well. In

addition, this state-of-the-art tool performed very well, gaining high detection accuracy in the

tests conducted by the researchers. With smaller test samples of just 8 bytes in size, the team

achieved the best results with the SVM classifier which scanned these small samples with

the accuracy of approximately 50% and most classifiers reached the accuracy of 90% with

test samples of 4000 bytes in size (Kairajärvi, Costin, and Hämäläinen 2020b). Therefore,

the results gained in this thesis are not in line with those gained in previous research. At a

glance, most of the shellcode files scanned in this thesis fall in the range of 100-300 bytes in

size, and when using the random forest classifier, the detection accuracy with these smaller

files was about 23% with the code-only option and about 25% with the fragment option.

In the tests performed by (Kairajärvi, Costin, and Hämäläinen 2020b), the same classifier

achieved the accuracy of nearly 80% with test samples of 128 bytes size and at 256 bytes

the accuracy was closing in on 90%. Partly this could be due to the fact that some of the

shellcode files used in this thesis were encoded, and as stated before, this impacted heavily

on the detection accuracy.

Currently ISAdetect supports many different architectures, but not x86, x86-64 and x64 for

example (Kairajärvi, Costin, and Hämäläinen 2020b). Based on the observations made when

collecting shellcodes for this thesis, the most common architecture for shellcodes is x86. This

can be seen from tables 1 and 2. It might be worthwhile to add support for x86 and various

other architectures as well, such as x86-64 and x64, if the intention is to develop the tool to

61

accurately detect the instruction set architecture from shellcodes as well.

7.1 Limitations

The set of shellcodes used in testing may not have been large and diverse enough and it is

not evenly balanced when it comes to different architectures. This was largely because of the

availability of shellcodes in the required formats, but perhaps more effort could have been

placed into acquiring these kinds of shellcodes as well.

When compared to the amount of architectures that tools such as ISAdetect (Kairajärvi,

Costin, and Hämäläinen 2020b) or radare2 (”The Official Radare2 Book” 2020) support, it

is a small number. Largely these limitations were caused by the availability of shellcodes

and the lack of skill to write more for certain architectures. In addition, only three different

sources were used when collecting the shellcodes for the main database. Most likely there

are more than just three sources from where to acquire shellcodes for research purposes in

such as blogs and other databases and repositories.

7.2 Future work

First, the shellcode database and the collection method of the codes could be improved. A

tool which automatically collects shellcodes from given sources and compiles them into a

balanced database could be programmed. This tool could also be programmed to automat-

ically maintain the database. When examining the architecture distribution in table 2, it is

clear that some architectures are heavily underrepresented. Future work should put emphasis

on collecting or writing more shellcode for these architectures in order to be able to reliably

conduct tests on these architectures as well. In addition, as noted by Kairajärvi, Costin, and

Hämäläinen (2020b), most likely new architectures are emerging due to the rising popularity

of Iot. Therefore, this tool could also be programmed to somehow take this possibility in

consideration, for example by writing code to which it is easy to add new features such as

possible new architectures. Furthermore, in future research shellcodes could also be searched

from other sources as well than the three which were used in this thesis.

62

Second, the Python scripts created for this thesis could be refactored and possibly combined

into a one single program. Currently, the scripts have a lot of similar code which could be

generalized. This would make the scripts easier to maintain and upgrade for any possible

future usage.

Third, a comparison could be made with reverse engineering software such as radare2 to

see if this kind method yields correct results faster or more accurately. Radare2 is a frame-

work for reverse engineering which supports various architectures, file formats and operating

systems (”The Official Radare2 Book” 2020).

Finally, the issues mentioned in section 6.4 should be taken into consideration in future

research. More testing should be done with ISAdetect’s code-only and fragment options

in order to see if a clear winner could be identified. In this thesis, the fragment option

fared a little better with shellcodes of under 2000 bytes in size, but the difference compared

to the code-only option was so small that it is difficult to declare fragment as the better

option for scanning short shellcodes. Also, it was noticed that ISAdetect was most accurate

with the ARM architecture shellcodes and also that the program in general seems to handle

unencoded shellcodes better than encoded ones. The majority of the ARM shellcodes were

in fact unencoded which may explain why ISAdetect had more success with these shellcodes.

Future work should conduct more experiments in this area in order to figure out whether or

not the success with the ARM shellcodes was caused by the fact that the majority of these

files were unencoded.

63

8 Conclusion

The aim of this study was to examine how accurately a machine learning based ISA detection

system detects the instruction set architecture from short shellcodes. This was achieved by

building a representative real-world database of shellcodes for different architectures and

then using these codes to create a set of shellcodes for the testing phase. After building the

test set, the detection tool was tested against these shellcodes in order to find out how well

it performs and also to gain an understanding of its’ current functionality against shellcodes.

The results of these tests suggested that the current training is not sufficient enough for

detecting ISA from short shellcodes accurately and reliably as the overall detection accuracy

was approximately 30%. However, occasionally the program was able to correctly detect

ISA from very small shellcode files, for example from a file of just 16 bytes in size, which

indicates that this program and in general these kinds of ISA detection methods show a lot

of potential.

This was a quantitative study and the used research method was experimental research. The

research itself was conducted in a virtual environment. This method was suitable and it

enabled efficient and reliable testing and the virtual environment allowed to safely handle

and store the shellcodes. In addition, this was a relevant study as according to Chen et

al. (2016, 107) code injection is still a viable method of attack and will be in the future as

well, unless software vulnerabilities suddenly disappear.

This thesis contributes a representative real-world database of approximately 20000 shell-

codes which can be used to create training datasets for machine learning based ISA detec-

tion systems and information about how a state-of-the-art machine learning ISA detection

tool currently performs against short shellcodes. In addition, this thesis contributes a set

of Python scripts which automate the process of generating shellcodes with MSFvenom to

some extent.

The limitations were identified and they mostly deal with the main database and the smaller

database used in the tests, and the validity of the results. Future work should take these

limitations into account. This research can be taken further by various ways. For example,

64

the main shellcode database can be improved and expanded to include more architectures

and more shellcodes for certain architectures. Possible new emerging architectures can and

should be added into the database as well, and a tool could be built, which automatically

collects shellcodes and adds them into the database.

Despite the fact that the set goal of 90% could not be achieved in the tests conducted in

this thesis, it can be said that the potential of machine learning based ISA detection systems

remains high. The detection application tested in this thesis showed potential by correctly

detecting the instruction set architecture from very short shellcodes whose file size was in

the range of 100-200 bytes, and the smallest correctly detected shellcode file being just 16

bytes in size. Most likely with more training better results can be achieved and currently

there is no reason to believe that machine learning based ISA detection tools are not able to

handle short shellcodes efficiently and reliably.

65

Bibliography

Abd-El-Barr, Mostafa, and Hesham El-Rewini. 2005. Fundamentals of Computer Organiza-

tion and Architecture. Wiley Series on Parallel and Distributed Computing. Hoboken, N.J.:

Wiley-Interscience.

Anley, Chris, John Heasman, Felix "FX" Linder, and Gerardo Richarte. 2007. The Shell-

coder’s Handbook: Discovering and Exploiting Security Holes. 2nd edition. Wiley Publish-

ing, Inc.

Atlam, Hany F., Robert J. Walters, and Gary B. Wills. 2018. ”Intelligence of Things: Oppor-

tunities Challenges” (): 1–6. Visited on April 6, 2020. https://ieeexplore.ieee.

org/document/8627114.

Bell, Jason. 2014. Machine Learning: Hands-On for Developers and Technical Profession-

als. Somerset, UNITED STATES: John Wiley & Sons, Incorporated.

Borders, Kevin, Atul Prakash, and Mark Zielinski. 2007. ”Spector: Automatically Analyzing

Shell Code” (): 501–514. Visited on August 5, 2020. https://ieeexplore.ieee.

org/document/4413015.

Brinda, Gladis, and Geogen George. 2016. ”Detection and Analysis of Shellcode in Mali-

cious Documents”. International Journal of Computer Science and Network 5 (2): 310–314.

Visited on May 6, 2020. https://www.researchgate.net/publication/

317165959_Detection_and_Analysis_of_Shellcode_in_Malicious_

Documents.

”Buffer Overflow | OWASP”. 2020. Library Catalog: owasp.org. https://owasp.org/

www-community/vulnerabilities/Buffer_Overflow.

Chen, Mo, Changzhen Hu, Donghai Tian, Xin Wang, Yuan Liu, and Ning Li. 2016. ”Shellix:

An Efficient Approach for Shellcode Detection”. International Journal of Security and Its

Applications 10 (): 107–122.

66

https://ieeexplore.ieee.org/document/8627114
https://ieeexplore.ieee.org/document/8627114
https://ieeexplore.ieee.org/document/4413015
https://ieeexplore.ieee.org/document/4413015
https://www.researchgate.net/publication/317165959_Detection_and_Analysis_of_Shellcode_in_Malicious_Documents
https://www.researchgate.net/publication/317165959_Detection_and_Analysis_of_Shellcode_in_Malicious_Documents
https://www.researchgate.net/publication/317165959_Detection_and_Analysis_of_Shellcode_in_Malicious_Documents
https://owasp.org/www-community/vulnerabilities/Buffer_Overflow
https://owasp.org/www-community/vulnerabilities/Buffer_Overflow

Clemens, John. 2015. ”Automatic Classification of Object Code Using Machine Learning”.

Digital Investigation 14 (): S156–S162. Visited on June 17, 2020. https://doi.org/

10.1016/j.diin.2015.05.007.

Deng, Li. 2014. ”A tutorial survey of architectures, algorithms, and applications for deep

learning”. APSIPA Transactions on Signal and Information Processing 3:e2. Visited on April 4,

2020. https://www.cambridge.org/core/product/identifier/S204877

0313000097/type/journal_article.

Edgar, Thomas W., and David O. Manz. 2017. Research Methods for Cyber Security. Cam-

bridge, MA: Syngress.

”Endianness”. MDN Web Docs. 2020. Library Catalog: developer.mozilla.org. Visited on

June 17, 2020. https://developer.mozilla.org/en-US/docs/Glossary/

Endianness.

Fernandes de Mello, Rodrigo, and Moacir Antonelli Ponti. 2018. Machine Learning: A Prac-

tical Approach on the Statistical Learning Theory. Cham: Springer International Publishing.

Foster, James C., and Vincent Liu. 2006. Writing Security Tools and Exploits. Rockland,

MA: Syngress. Visited on January 2, 2021.

Foster, James C., Vitaly Osipov, Nish Bhalla, and Niels Heinen. 2005. Buffer Overflow At-

tacks : Detect, Exploit, Prevent. Rockland, MA: Syngress.

Foster, James C., and Mike Price. 2005. Sockets, Shellcode, Porting, and Coding: Reverse

Engineering Exploits and Tool Coding for Security Professionals. Rockland, Mass: Syngress.

Fox, Anthony, and Magnus O. Myreen. 2010. ”A Trustworthy Monadic Formalization of the

ARMv7 Instruction Set Architecture”. In Interactive Theorem Proving, edited by Matt Kauf-

mann and Lawrence C. Paulson, redacted by David Hutchison, Takeo Kanade, Josef Kittler,

Jon M. Kleinberg, Friedemann Mattern, John C. Mitchell, Moni Naor, et al., 6172:243–258.

Series Title: Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Hei-

delberg. Visited on June 17, 2020. http://link.springer.com/10.1007/978-

3-642-14052-5_18.

67

https://doi.org/10.1016/j.diin.2015.05.007
https://doi.org/10.1016/j.diin.2015.05.007
https://www.cambridge.org/core/product/identifier/S2048770313000097/type/journal_article
https://www.cambridge.org/core/product/identifier/S2048770313000097/type/journal_article
https://developer.mozilla.org/en-US/docs/Glossary/Endianness
https://developer.mozilla.org/en-US/docs/Glossary/Endianness
http://link.springer.com/10.1007/978-3-642-14052-5_18
http://link.springer.com/10.1007/978-3-642-14052-5_18

Garnham, Alan. 1987. Artificial Intelligence: An Introduction. Milton, UNITED KING-

DOM: Routledge.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT Press.

Han, Jiawei, and Micheline Kamber. 2011. Data Mining: Concepts and Techniques. Vol-

ume 3rd ed. The Morgan Kaufmann Series in Data Management Systems. Burlington, MA:

Morgan Kaufmann.

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. 2009. The Elements of Statistical

Learning : Data Mining, Inference, and Prediction. 2nd edition. Springer Series in Statistics.

New York: Springer-Verlag.

Japkowicz, Nathalie. 2000. ”The Class Imbalance Problem: Significance and Strategies”.

Proceedings of the 2000 International Conference on Artificial Intelligence ICAI ().

Kairajärvi, Sami, Andrei Costin, and Timo Hämäläinen. 2019. ”Towards usable automated

detection of CPU architecture and endianness for arbitrary binary files and object code

sequences” (). Visited on August 5, 2020. https://www.researchgate.net/

publication/335201405_Towards_usable_automated_detection_of_

CPU_architecture_and_endianness_for_arbitrary_binary_files_

and_object_code_sequences.

. 2020a. ISAdetect. Original-date: 2019-08-18T14:58:41Z. Visited on November 28,

2020. https://github.com/kairis/isadetect.

. 2020b. ”ISAdetect: Usable Automated Detection of CPU Architecture and Endi-

anness for Executable Binary Files and Object Code”, (New York, NY, USA), CODASPY

’20 (): 376–380. Visited on November 11, 2020. doi:10.1145/3374664.3375742.

https://doi.org/10.1145/3374664.3375742.

Kaplan, Jerry. 2016. Artificial Intelligence: What Everyone Needs to Know. Oxford, UNITED

STATES: Oxford University Press, Incorporated.

Lantz, Brett. 2013. Machine Learning with R : Learn How to Use R to Apply Powerful

Machine Learning Methods and Gain an Insight Into Real-world Applications. Birmingham,

UK: Packt Publishing.

68

https://www.researchgate.net/publication/335201405_Towards_usable_automated_detection_of_CPU_architecture_and_endianness_for_arbitrary_binary_files_and_object_code_sequences
https://www.researchgate.net/publication/335201405_Towards_usable_automated_detection_of_CPU_architecture_and_endianness_for_arbitrary_binary_files_and_object_code_sequences
https://www.researchgate.net/publication/335201405_Towards_usable_automated_detection_of_CPU_architecture_and_endianness_for_arbitrary_binary_files_and_object_code_sequences
https://www.researchgate.net/publication/335201405_Towards_usable_automated_detection_of_CPU_architecture_and_endianness_for_arbitrary_binary_files_and_object_code_sequences
https://github.com/kairis/isadetect
http://dx.doi.org/10.1145/3374664.3375742
https://doi.org/10.1145/3374664.3375742

Mohammed, Mohssen, Muhammad Badruddin Khan, and Eihab Bashier Mohammed Bashier.

2017. Machine Learning : Algorithms and Applications. CRC Press.

Murty, M.N., and Rashmi Raghava. 2016. Support Vector Machines and Perceptrons: Learn-

ing, Optimization, Classification, and Application to Social Networks. SpringerBriefs in

Computer Science. Cham: Springer International Publishing.

OffSec Services Limited. 2020a. ”MSFvenom | Offensive Security”. Visited on November 6,

2020. https://www.offensive-security.com/metasploit-unleashed/

msfvenom/.

. 2020b. ”Offensive Security’s Exploit Database Archive”. Visited on November 6,

2020. https://www.exploit-db.com/shellcodes.

. 2020c. ”Our Most Advanced Penetration Testing Distribution, Ever.” Visited on

November 6, 2020. https://www.kali.org/.

. 2020d. The Exploit Database Git Repository. Original-date: 2013-12-03T18:50:07Z.

Visited on November 6, 2020. https://github.com/offensive-security/

exploitdb/tree/master/shellcodes.

Oracle. 2020. ”Oracle VM VirtualBox”. Visited on November 6, 2020. https://www.

virtualbox.org/.

Richert, Willi, and Luis Pedro Coelho. 2013. Building Machine Learning Systems with Python.

Birmingham: Packt Publishing.

Shaw, Zed. 2020. ”Programming, Motherfucker - Do you speak it?” Visited on March 26,

2020. http://programming-motherfucker.com/.

”Shell-Storm Shellcodes Database”. 2020. Visited on November 6, 2020. http://shell

-storm.org/shellcode/.

Sikorski, Michael, and Andrew Honig. 2012. Practical Malware Analysis: A Hands-On

Guide to Dissecting Malicious Software. San Francisco, UNITED STATES: No Starch Press,

Incorporated.

69

https://www.offensive-security.com/metasploit-unleashed/msfvenom/
https://www.offensive-security.com/metasploit-unleashed/msfvenom/
https://www.exploit-db.com/shellcodes
https://www.kali.org/
https://github.com/offensive-security/exploitdb/tree/master/shellcodes
https://github.com/offensive-security/exploitdb/tree/master/shellcodes
https://www.virtualbox.org/
https://www.virtualbox.org/
http://programming-motherfucker.com/
http://shell-storm.org/shellcode/
http://shell-storm.org/shellcode/

Sweetman, Dominic. 2007. See MIPS Run. Volume 2nd ed. The Morgan Kaufmann Series

in Computer Architecture and Design. San Francisco, Calif: Morgan Kaufmann.

”The Official Radare2 Book”. 2020. Visited on December 14, 2020. https://book.

rada.re/.

Theodoridis, Sergios. 2015. Machine Learning : A Bayesian and Optimization Perspective.

London: Academic Press.

University of Jyväskylä. 2010a. ”Doing Research — Jyväskylän yliopiston Koppa”. Visited

on December 7, 2020. https://koppa.jyu.fi/avoimet/hum/menetelmapolk

uja/en/research-process/doing-research#reliability.

. 2010b. ”Empirical Research — Jyväskylän yliopiston Koppa”. Visited on May 11,

2020. https://koppa.jyu.fi/avoimet/hum/menetelmapolkuja/en/

methodmap/strategies/empirical-research.

. 2010c. ”Experimental Research — Jyväskylän yliopiston Koppa”. Visited on May 11,

2020. https://koppa.jyu.fi/avoimet/hum/menetelmapolkuja/en/

methodmap/strategies/experimental-research.

. 2010d. ”Quantitative Research — Jyväskylän yliopiston Koppa”. Visited on May 11,

2020. https://koppa.jyu.fi/avoimet/hum/menetelmapolkuja/en/

methodmap/strategies/quantitative-research.

. 2010e. ”Strategies — Jyväskylän yliopiston Koppa”. Visited on May 11, 2020. ht

tps://koppa.jyu.fi/avoimet/hum/menetelmapolkuja/en/methodmap/

strategies.

Zolotukhin, Mikhail, and Timo Hämäläinen. 2013. ”Support vector machine integrated with

game-theoretic approach and genetic algorithm for the detection and classification of mal-

ware”, (Atlanta, GA) (): 211–216. Visited on April 17, 2020. http://ieeexplore.

ieee.org/document/6824988/.

70

https://book.rada.re/
https://book.rada.re/
https://koppa.jyu.fi/avoimet/hum/menetelmapolkuja/en/research-process/doing-research#reliability
https://koppa.jyu.fi/avoimet/hum/menetelmapolkuja/en/research-process/doing-research#reliability
https://koppa.jyu.fi/avoimet/hum/menetelmapolkuja/en/methodmap/strategies/empirical-research
https://koppa.jyu.fi/avoimet/hum/menetelmapolkuja/en/methodmap/strategies/empirical-research
https://koppa.jyu.fi/avoimet/hum/menetelmapolkuja/en/methodmap/strategies/experimental-research
https://koppa.jyu.fi/avoimet/hum/menetelmapolkuja/en/methodmap/strategies/experimental-research
https://koppa.jyu.fi/avoimet/hum/menetelmapolkuja/en/methodmap/strategies/quantitative-research
https://koppa.jyu.fi/avoimet/hum/menetelmapolkuja/en/methodmap/strategies/quantitative-research
https://koppa.jyu.fi/avoimet/hum/menetelmapolkuja/en/methodmap/strategies
https://koppa.jyu.fi/avoimet/hum/menetelmapolkuja/en/methodmap/strategies
https://koppa.jyu.fi/avoimet/hum/menetelmapolkuja/en/methodmap/strategies
http://ieeexplore.ieee.org/document/6824988/
http://ieeexplore.ieee.org/document/6824988/

Appendices

A Python scripts used in bad character analysis of MSFvenom

Script for generating shellcodes with different 1-byte combinations as bad characters:
#! / u s r / b i n / py thon

i m p o r t os

i m p o r t s y s

" " "

Th i s program a t t e m p t s t o c r e a t e c e r t a i n MSFvenom s h e l l c o d e s wi th

e v e r y p o s s i b l e 1−b y t e c o m b i n a t i o n .

" " "

The b a d c h a r s t a b l e c o n t a i n s e v e r y 1−b y t e c o m b i n a t i o n from 0x00 t o 0 x f f .

TODO: maybe g e n e r a t e t h e s e i n s t e a d o f hard−co d i ng

b a d c h a r s =

[" \ \ x00 " , " \ \ x01 " , " \ \ x02 " , " \ \ x03 " , " \ \ x04 " , " \ \ x05 " , " \ \ x06 " , " \ \ x07 " , " \ \ x08 " , " \ \ x09 " , " \ \ x0a " , " \ \ x0b " , " \ \ x0c " ,

" \ \ x0d " , " \ \ x0e " , " \ \ x0f " , " \ \ x10 " , " \ \ x11 " , " \ \ x12 " , " \ \ x13 " , " \ \ x14 " , " \ \ x15 " , " \ \ x16 " , " \ \ x17 " , " \ \ x18 " , " \ \ x19 " ,

" \ \ x1a " , " \ \ x1b " , " \ \ x1c " , " \ \ x1d " , " \ \ x1e " , " \ \ x1f " , " \ \ x20 " , " \ \ x21 " , " \ \ x22 " , " \ \ x23 " , " \ \ x24 " , " \ \ x25 " , " \ \ x26 " ,

" \ \ x27 " , " \ \ x28 " , " \ \ x29 " , " \ \ x2a " , " \ \ x2b " , " \ \ x2c " , " \ \ x2d " , " \ \ x2e " , " \ \ x2f " , " \ \ x30 " , " \ \ x31 " , " \ \ x32 " , " \ \ x33 " ,

" \ \ x34 " , " \ \ x35 " , " \ \ x36 " , " \ \ x37 " , " \ \ x38 " , " \ \ x39 " , " \ \ x3a " , " \ \ x3b " , " \ \ x3c " , " \ \ x3d " , " \ \ x3e " , " \ \ x3f " , " \ \ x40 " ,

" \ \ x41 " , " \ \ x42 " , " \ \ x43 " , " \ \ x44 " , " \ \ x45 " , " \ \ x46 " , " \ \ x47 " , " \ \ x48 " , " \ \ x49 " , " \ \ x4a " , " \ \ x4b " , " \ \ x4c " , " \ \ x4d " ,

" \ \ x4e " , " \ \ x4f " , " \ \ x50 " , " \ \ x51 " , " \ \ x52 " , " \ \ x53 " , " \ \ x54 " , " \ \ x55 " , " \ \ x56 " , " \ \ x57 " , " \ \ x58 " , " \ \ x59 " , " \ \ x5a " ,

" \ \ x5b " , " \ \ x5c " , " \ \ x5d " , " \ \ x5e " , " \ \ x5f " , " \ \ x60 " , " \ \ x61 " , " \ \ x62 " , " \ \ x63 " , " \ \ x64 " , " \ \ x65 " , " \ \ x66 " , " \ \ x67 " ,

" \ \ x68 " , " \ \ x69 " , " \ \ x6a " , " \ \ x6b " , " \ \ x6c " , " \ \ x6d " , " \ \ x6e " , " \ \ x6f " , " \ \ x70 " , " \ \ x71 " , " \ \ x72 " , " \ \ x73 " , " \ \ x74 " ,

" \ \ x75 " , " \ \ x76 " , " \ \ x77 " , " \ \ x78 " , " \ \ x79 " , " \ \ x7a " , " \ \ x7b " , " \ \ x7c " , " \ \ x7d " , " \ \ x7e " , " \ \ x7f " , " \ \ x80 " , " \ \ x81 " ,

" \ \ x82 " , " \ \ x83 " , " \ \ x84 " , " \ \ x85 " , " \ \ x86 " , " \ \ x87 " , " \ \ x88 " , " \ \ x89 " , " \ \ x8a " , " \ \ x8b " , " \ \ x8c " , " \ \ x8d " , " \ \ x8e " ,

" \ \ x8f " , " \ \ x90 " , " \ \ x91 " , " \ \ x92 " , " \ \ x93 " , " \ \ x94 " , " \ \ x95 " , " \ \ x96 " , " \ \ x97 " , " \ \ x98 " , " \ \ x99 " , " \ \ x9a " , " \ \ x9b " ,

" \ \ x9c " , " \ \ x9d " , " \ \ x9e " , " \ \ x9f " , " \ \ xa0 " , " \ \ xa1 " , " \ \ xa2 " , " \ \ xa3 " , " \ \ xa4 " , " \ \ xa5 " , " \ \ xa6 " , " \ \ xa7 " , " \ \ xa8 " ,

" \ \ xa9 " , " \ \ xaa " , " \ \ xab " , " \ \ xac " , " \ \ xad " , " \ \ xae " , " \ \ x a f " , " \ \ xb0 " , " \ \ xb1 " , " \ \ xb2 " , " \ \ xb3 " , " \ \ xb4 " , " \ \ xb5 " ,

" \ \ xb6 " , " \ \ xb7 " , " \ \ xb8 " , " \ \ xb9 " , " \ \ xba " , " \ \ xbb " , " \ \ xbc " , " \ \ xbd " , " \ \ xbe " , " \ \ xbf " , " \ \ xc0 " , " \ \ xc1 " , " \ \ xc2 " ,

" \ \ xc3 " , " \ \ xc4 " , " \ \ xc5 " , " \ \ xc6 " , " \ \ xc7 " , " \ \ xc8 " , " \ \ xc9 " , " \ \ xca " , " \ \ xcb " , " \ \ xcc " , " \ \ xcd " , " \ \ xce " , " \ \ x c f " ,

" \ \ xd0 " , " \ \ xd1 " , " \ \ xd2 " , " \ \ xd3 " , " \ \ xd4 " , " \ \ xd5 " , " \ \ xd6 " , " \ \ xd7 " , " \ \ xd8 " , " \ \ xd9 " , " \ \ xda " , " \ \ xdb " , " \ \ xdc " ,

" \ \ xdd " , " \ \ xde " , " \ \ xdf " , " \ \ xe0 " , " \ \ xe1 " , " \ \ xe2 " , " \ \ xe3 " , " \ \ xe4 " , " \ \ xe5 " , " \ \ xe6 " , " \ \ xe7 " , " \ \ xe8 " , " \ \ xe9 " ,

" \ \ xea " , " \ \ xeb " , " \ \ xec " , " \ \ xed " , " \ \ xee " , " \ \ x e f " , " \ \ x f0 " , " \ \ x f1 " , " \ \ x f2 " , " \ \ x f3 " , " \ \ x f4 " , " \ \ x f5 " , " \ \ x f6 " ,

" \ \ x f7 " , " \ \ x f8 " , " \ \ x f9 " , " \ \ x f a " , " \ \ x fb " , " \ \ x f c " , " \ \ x fd " , " \ \ x f e " , " \ \ x f f "]

Check t h a t t h e amount o f b y t e c o m b i n a t i o n s i s 2 ^ 8 .

p r i n t (" Number o f 1−b y t e c o m b i n a t i o n s " , l e n (b a d c h a r s))

S u p p o r t e d a r c h i t e c t u r e s and used p a y l o a d s .

p l_x86 = " l i n u x / x86 / chmod "

p l_x64 = " osx / x64 / say "

p l_mips = " l i n u x / m i p s l e / r e b o o t "

p l_arm = " osx / a rmle / v i b r a t e "

p l _p pc = " osx / ppc / s h e l l / f i n d _ t a g "

p l_ppc64 = " l i n u x / ppc64 / s h e l l _ f i n d _ p o r t "

p l _ s p a r c = " s o l a r i s / s p a r c / s h e l l _ f i n d _ p o r t "

p l _ a a r c h 6 4 = " l i n u x / a a r c h 6 4 / s h e l l _ r e v e r s e _ t c p "

p l = " "

The u s e r can e n t e r t h e d e s i r e d a r c h i t e c t u r e .

User i n p u t w i l l d e t e r m i n e t h e p a y l o a d .

The program w i l l s h u t down , i f an u n s u p p o r t e d a r c h i t e c t u r e i s s u p p l i e d .

p r i n t (" A v a i l a b l e a r c h i t e c t u r e s : x86 , x64 , mips , arm , ppc , ppc64 , s p a r c , a a r c h 6 4 ")

v a l = i n p u t (" E n t e r a r c h i t e c t u r e : ")

71

v a l = v a l . l ower ()

p r i n t (" Chosen a r c h i t e c t u r e : " + v a l)

i f v a l == " mips " : p l = p l_mips

e l i f v a l == " s p a r c " : p l = p l _ s p a r c

e l i f v a l == " arm " : p l = pl_arm

e l i f v a l == " ppc " : p l = p l_p pc

e l i f v a l == " ppc64 " : p l = p l_ppc64

e l i f v a l == " a a r c h 6 4 " : p l = p l _ a a r c h 6 4

e l i f v a l == " x86 " : p l = p l_x86

e l i f v a l == " x64 " : p l = p l_x64

e l s e : s y s . e x i t (" Noooooooo ! Try a g a i n . . . ")

Th i s loop a t t e m p t s t o g i v e e v e r y 1−b y t e c o m b i n a t i o n

as a bad c h a r a c t e r t o MSFvenom u s i n g t h e −b p a r a m e t e r .

The o u t p u t f i l e name i s t a g g e d wi th t h e used b y t e c o m b i n a t i o n .

f o r i i n b a d c h a r s :

f i l e n a m e = (i + " _ " + p l) . s t r i p () . r e p l a c e (" / " , " _ ") . r e p l a c e (" \ \ " , " ") + " . c "

p r i n t (" msfvenom −p " + " " + p l + " " + "− f c " + " " +

"−b " + " " + " ’ " + i + " ’ " + " " + "−o " + " " + f i l e n a m e)

os . sys tem (" msfvenom −p " + " " + p l + " " + "− f c " + " " +

"−b " + " " + " ’ " + i + " ’ " + " " + "−o " + " " + f i l e n a m e)

72

Script for checking which bytes were accepted and which were rejected:
#! / u s r / b i n / py thon

i m p o r t os

from os i m p o r t l i s t d i r

from os . p a t h i m p o r t i s f i l e , j o i n

" " "

Th i s program c he c ks which b y t e c o m b i n a t i o n s were a c c e p t e d and which were r e j e c t e d .

B e f o r e runn ing , t h e s h e l l c o d e s must be manua l ly moved t o a f o l d e r which i s named

a f t e r t h e t a r g e t a r c h i t e c t u r e , and t h e f o l d e r name must be w r i t t e n i n upper case ,

f o r example : X86 , MIPS , PPC64 e t c .

TODO: Make t h i s p r o c e s s a u t o m a t i c .

" " "

Same t a b l e a s i n t h e p r e v i o u s s c r i p t , removed t o save s p a c e .

b a d c h a r s = []

The u s e r can e n t e r t h e d e s i r e d a r c h i t e c t u r e .

p r i n t (" A v a i l a b l e a r c h i t e c t u r e s : x86 , x64 , mips , arm , ppc , ppc64 , s p a r c , a a r c h 6 4 ")

v a l = i n p u t (" E n t e r a r c h i t e c t u r e : ")

v a l = v a l . uppe r ()

p r i n t (" Chosen a r c h i t e c t u r e : " + v a l)

C r e a t e a t a b l e o f g e n e r a t e d s h e l l c o d e f i l e s based on u s e r i n p u t .

p a t h = os . p a t h . a b s p a t h (os . getcwd ()) + " / " + v a l + " / "

f i l e s = [f f o r f i n l i s t d i r (p a t h) i f i s f i l e (j o i n (pa th , f))]

S l i c e t h e used b y t e from t h e s h e l l c o d e f i l e n a m e

and c r e a t e a new t a b l e which c o n t a i n s t h e a c c e p t e d

b y t e c o m b i n a t i o n s .

f i l e s _ b c = []

f o r i i n f i l e s : f i l e s _ b c . append (" \ \ " + i [: 3])

P r i n t t h e t o t a l amount o f 1−b y t e c o m b i n a t i o n s , t h e amount

o f a c c e p t e d b y t e s and t h e amount o f r e j e c t e d b y t e s .

p r i n t (" T o t a l : " + s t r (l e n (b a d c h a r s)) + " \ n " + " G e n e r a t e d : " + s t r (l e n (f i l e s _ b c)))

p r i n t (" R e j e c t e d : " , l e n (b a d c h a r s) − l e n (f i l e s _ b c))

C r e a t e s e t s from t h e t a b l e s , compare them and p r i n t t h e

r e j e c t e d b y t e c o m b i n a t i o n s .

s e t 1 = s e t (b a d c h a r s)

s e t 2 = s e t (f i l e s _ b c)

m i s s i n g = l i s t (s o r t e d (s e t 1−s e t 2))

p r i n t (" R e j e c t e d b y t e s : " , ’ ’ . j o i n (m i s s i n g))

73

Script for creating shellcodes for MSFvenom LHOST analysis
#! / u s r / b i n / py thon

i m p o r t os

i m p o r t s y s

" " "

Program f o r t e s t i n g MSFvenom LHOST p a r a m e t e r wi th

e v e r y p o s s i b l e 1−b y t e c o m b i n a t i o n .

" " "

The b a d c h a r s t a b l e c o n t a i n s e v e r y 1−b y t e c o m b i n a t i o n from 0x00 t o 0 x f f .

b a d c h a r s = []

S u p p o r t e d a r c h i t e c t u r e s and p a y l o a d s .

p l_x86 = " l i n u x / x86 / s h e l l / r e v e r s e _ t c p "

p l_x64 = " l i n u x / x64 / s h e l l / r e v e r s e _ t c p "

p l_mips = " l i n u x / mipsbe / s h e l l / r e v e r s e _ t c p "

pl_arm = " osx / a rmle / s h e l l _ r e v e r s e _ t c p "

p l_p pc = " l i n u x / ppc / s h e l l _ r e v e r s e _ t c p "

p l_ppc64 = " l i n u x / ppc64 / s h e l l _ r e v e r s e _ t c p "

p l _ s p a r c = " bsd / s p a r c / s h e l l _ r e v e r s e _ t c p "

p l _ a a r c h 6 4 = " l i n u x / a a r c h 6 4 / s h e l l _ r e v e r s e _ t c p "

p l = " " # For d e c i d i n g which p a y l o a d t o use

The u s e r can e n t e r t h e d e s i r e d a r c h i t e c t u r e .

User i n p u t w i l l d e t e r m i n e t h e p a y l o a d .

The program w i l l s h u t down , i f an u n s u p p o r t e d a r c h i t e c t u r e i s s u p p l i e d .

p r i n t (" A v a i l a b l e a r c h i t e c t u r e s : x86 , x64 , mips , arm , ppc , ppc64 , s p a r c , a a r c h 6 4 ")

v a l _ a r c h = i n p u t (" E n t e r a r c h i t e c t u r e : ")

v a l _ a r c h = v a l _ a r c h . lower ()

v a l _ i p = i n p u t (" Choose LHOST IP a d d r e s s : ")

p r i n t (" Chosen a r c h i t e c t u r e : " + v a l _ a r c h)

p r i n t (" Chosen IP a d d r e s s : " + s t r (v a l _ i p))

i f v a l _ a r c h == " mips " : p l = p l_mips

e l i f v a l _ a r c h == " s p a r c " : p l = p l _ s p a r c

e l i f v a l _ a r c h == " arm " : p l = pl_arm

e l i f v a l _ a r c h == " ppc " : p l = p l_ ppc

e l i f v a l _ a r c h == " ppc64 " : p l = p l_ppc64

e l i f v a l _ a r c h == " a a r c h 6 4 " : p l = p l _ a a r c h 6 4

e l i f v a l _ a r c h == " x86 " : p l = p l_x86

e l i f v a l _ a r c h == " x64 " : p l = p l_x64

e l s e : s y s . e x i t (" Noooooooo ! Try a g a i n . . . ")

Th i s loop a t t e m p t s t o g i v e e v e r y 1−b y t e c o m b i n a t i o n

as a bad c h a r a c t e r t o MSFvenom u s i n g t h e −b p a r a m e t e r .

The o u t p u t f i l e name i s t a g g e d wi th t h e used b y t e c o m b i n a t i o n .

f o r i i n b a d c h a r s :

f i l e n a m e = (i + " _ " + v a l _ i p + " _ " + p l) . s t r i p () . r e p l a c e (" / " , " _ ") . r e p l a c e (" \ \ " , " ") . r e p l a c e (" . " , " _ ") + " . c "

command = (" msfvenom −p " + " " + p l + " " + "LHOST=" + v a l _ i p + " " +

"− f c " + " " + "−b " + " ’" + i + " ’ " + "−o " + " " + f i l e n a m e)

p r i n t (command)

os . sys tem (command)

74

Script for creating shellcodes for MSFvenom RHOST analysis
#! / u s r / b i n / py thon

i m p o r t os

i m p o r t s y s

" " "

Program f o r t e s t i n g MSFvenom RHOST p a r a m e t e r wi th

e v e r y p o s s i b l e 1−b y t e c o m b i n a t i o n .

" " "

The b a d c h a r s t a b l e c o n t a i n s e v e r y 1−b y t e c o m b i n a t i o n from 0x00 t o 0 x f f .

b a d c h a r s = []

S u p p o r t e d a r c h i t e c t u r e s and p a y l o a d s .

p l_x86 = " bsd / x86 / s h e l l _ b i n d _ t c p "

p l_x64 = " bsd / x64 / s h e l l _ b i n d _ t c p "

p l_mips = " l i n u x / m i p s l e / s h e l l _ b i n d _ t c p "

pl_arm = " l i n u x / a rmle / s h e l l / b i n d _ t c p "

p l_p pc = " osx / ppc / s h e l l _ b i n d _ t c p "

p l_ppc64 = " l i n u x / ppc64 / s h e l l _ b i n d _ t c p "

p l _ s p a r c = " bsd / s p a r c / s h e l l _ b i n d _ t c p "

p l _ a a r c h 6 4 = " "

p l = " "

The u s e r can e n t e r t h e d e s i r e d a r c h i t e c t u r e .

User i n p u t w i l l d e t e r m i n e t h e p a y l o a d .

The program w i l l s h u t down , i f an u n s u p p o r t e d a r c h i t e c t u r e i s s u p p l i e d .

p r i n t (" A v a i l a b l e a r c h i t e c t u r e s : x86 , x64 , mips , arm , ppc , ppc64 , s p a r c , a a r c h 6 4 ")

v a l _ a r c h = i n p u t (" E n t e r a r c h i t e c t u r e : ")

v a l _ a r c h = v a l _ a r c h . lower ()

v a l _ i p = i n p u t (" Choose RHOST IP a d d r e s s o r l e a v e empty t o i g n o r e RHOST p a r a m e t e r : ")

p r i n t (" Chosen a r c h i t e c t u r e : " + v a l _ a r c h)

p r i n t (" Chosen p o r t : " + s t r (v a l _ i p))

i f v a l _ a r c h == " mips " : p l = p l_mips

e l i f v a l _ a r c h == " s p a r c " : p l = p l _ s p a r c

e l i f v a l _ a r c h == " arm " : p l = pl_arm

e l i f v a l _ a r c h == " ppc " : p l = p l_ ppc

e l i f v a l _ a r c h == " ppc64 " : p l = p l_ppc64

e l i f v a l _ a r c h == " a a r c h 6 4 " : p l = p l _ a a r c h 6 4

e l i f v a l _ a r c h == " x86 " : p l = p l_x86

e l i f v a l _ a r c h == " x64 " : p l = p l_x64

e l s e : s y s . e x i t (" Noooooooo ! Try a g a i n . . . ")

Th i s loop a t t e m p t s t o g i v e e v e r y 1−b y t e c o m b i n a t i o n

as a bad c h a r a c t e r t o MSFvenom u s i n g t h e −b p a r a m e t e r .

The o u t p u t f i l e name i s t a g g e d wi th t h e used b y t e c o m b i n a t i o n .

i f l e n (v a l _ i p) < 1 :

f o r i i n b a d c h a r s :

f i l e n a m e = (i + " _ " + v a l _ i p + " _ " + p l) . s t r i p () . r e p l a c e (" / " , " _ ") . r e p l a c e (" \ \ " , " ") . r e p l a c e (" . " , " _ ") + " . c "

command = (" msfvenom −p " + " " + p l + " " "LPORT=4444" + " " +

"− f c " + " " + "−b " + " ’" + i + " ’ " + "−o " + " " + f i l e n a m e)

p r i n t (command)

os . sys tem (command)

e l s e :

f o r i i n b a d c h a r s :

f i l e n a m e = (i + " _ " + v a l _ i p + " _ " + p l) . s t r i p () . r e p l a c e (" / " , " _ ") . r e p l a c e (" \ \ " , " ") . r e p l a c e (" . " , " _ ") + " . c "

command = (" msfvenom −p " + " " + p l + " " "LPORT=4444" + " " + "RHOST=" + v a l _ i p + " " +

"− f c " + " " + "−b " + " ’" + i + " ’ " + "−o " + " " + f i l e n a m e)

p r i n t (command)

os . sys tem (command)

75

Script for creating shellcodes for MSFvenom LPORT analysis
#! / u s r / b i n / py thon

i m p o r t os

i m p o r t s y s

" " "

Program f o r t e s t i n g MSFvenom LPORT p a r a m e t e r wi th

e v e r y p o s s i b l e 1−b y t e c o m b i n a t i o n .

" " "

The b a d c h a r s t a b l e c o n t a i n s e v e r y 1−b y t e c o m b i n a t i o n from 0x00 t o 0 x f f .

b a d c h a r s = []

S u p p o r t e d a r c h i t e c t u r e s and p a y l o a d s .

p l_x86 = " bsd / x86 / s h e l l _ b i n d _ t c p " #LPORT #RHOST

pl_x64 = " bsd / x64 / s h e l l _ b i n d _ t c p " #LPORT #RHOST

pl_mips = " l i n u x / m i p s l e / s h e l l _ b i n d _ t c p " #LPORT #RHOST

pl_arm = " l i n u x / a rmle / s h e l l / b i n d _ t c p " #LPORT #RHOST

p l_p pc = " osx / ppc / s h e l l _ b i n d _ t c p " #LPORT #RHOST

pl_ppc64 = " l i n u x / ppc64 / s h e l l _ b i n d _ t c p " #LPORT #RHOST

p l _ s p a r c = " bsd / s p a r c / s h e l l _ b i n d _ t c p " #LPORT #RHOST

p l = " "

The u s e r can e n t e r t h e d e s i r e d a r c h i t e c t u r e .

User i n p u t w i l l d e t e r m i n e t h e p a y l o a d .

The program w i l l s h u t down , i f an u n s u p p o r t e d a r c h i t e c t u r e i s s u p p l i e d .

p r i n t (" A v a i l a b l e a r c h i t e c t u r e s : x86 , x64 , mips , arm , ppc , ppc64 , s p a r c , a a r c h 6 4 ")

v a l _ a r c h = i n p u t (" E n t e r a r c h i t e c t u r e : ")

v a l _ a r c h = v a l _ a r c h . lower ()

v a l _ p o r t = i n p u t (" Choose LPORT : ")

p r i n t (" Chosen a r c h i t e c t u r e : " + v a l _ a r c h)

p r i n t (" Chosen LPORT : " + s t r (v a l _ p o r t))

i f v a l _ a r c h == " mips " : p l = p l_mips

e l i f v a l _ a r c h == " s p a r c " : p l = p l _ s p a r c

e l i f v a l _ a r c h == " arm " : p l = pl_arm

e l i f v a l _ a r c h == " ppc " : p l = p l_ ppc

e l i f v a l _ a r c h == " ppc64 " : p l = p l_ppc64

e l i f v a l _ a r c h == " a a r c h 6 4 " : p l = p l _ a a r c h 6 4

e l i f v a l _ a r c h == " x86 " : p l = p l_x86

e l i f v a l _ a r c h == " x64 " : p l = p l_x64

e l s e : s y s . e x i t (" Noooooooo ! Try a g a i n . . . ")

Th i s loop a t t e m p t s t o g i v e e v e r y 1−b y t e c o m b i n a t i o n

as a bad c h a r a c t e r t o MSFvenom u s i n g t h e −b p a r a m e t e r .

The o u t p u t f i l e name i s t a g g e d wi th t h e used b y t e c o m b i n a t i o n .

f o r i i n b a d c h a r s :

f i l e n a m e = (i + " _ " + v a l _ p o r t + " _ " + p l) . s t r i p () . r e p l a c e (" / " , " _ ") . r e p l a c e (" \ \ " , " ") . r e p l a c e (" . " , " _ ") + " . c "

command = (" msfvenom −p " + " " + p l + " " + "LPORT=" + v a l _ p o r t + " " +

"− f c " + " " + "−b " + " ’" + i + " ’ " + "−o " + " " + f i l e n a m e)

p r i n t (command)

os . sys tem (command)

76

Script for checking the results of LHOST, RHOST and LPORT tests
#! / u s r / b i n / py thon

i m p o r t os

from os i m p o r t l i s t d i r

from os . p a t h i m p o r t i s f i l e , j o i n

b a d c h a r s = []

The u s e r can e n t e r t h e d e s i r e d a r c h i t e c t u r e .

p r i n t (" A v a i l a b l e a r c h i t e c t u r e s : x86 , x64 , mips , arm , ppc , ppc64 , s p a r c , a a r c h 6 4 ")

v a l _ a r c h = i n p u t (" E n t e r a r c h i t e c t u r e : ")

v a l _ a r c h = v a l _ a r c h . uppe r ()

v a l _ c h o i c e = i n p u t (" Check LHOST IP (1) , RHOST IP (2) o r LPORT (3) ? ")

v a l _ c h o i c e = i n t (v a l _ c h o i c e)

i f v a l _ c h o i c e == 1 :

p r i n t (" Checking LHOST")

v a l _ l h o s t = i n p u t (" E n t e r IP : ")

p r i n t (" Chosen a r c h i t e c t u r e : " + v a l _ a r c h)

p r i n t (" Chosen LHOST: " + v a l _ l h o s t)

v a l _ l h o s t = " l h o s t _ " + v a l _ l h o s t . r e p l a c e (" . " , " _ ")

C r e a t e a t a b l e o f g e n e r a t e d s h e l l c o d e f i l e s based on u s e r i n p u t .

p a t h = os . p a t h . a b s p a t h (os . getcwd ()) + " / " + v a l _ l h o s t + " / " + v a l _ a r c h + " / "

f i l e s = [f f o r f i n l i s t d i r (p a t h) i f i s f i l e (j o i n (pa th , f))]

S l i c e t h e used b y t e from t h e s h e l l c o d e f i l e n a m e

and c r e a t e a new t a b l e which c o n t a i n s t h e a c c e p t e d

b y t e c o m b i n a t i o n s .

f i l e s _ b c = []

f o r i i n f i l e s : f i l e s _ b c . append (" \ \ " + i [: 3])

P r i n t t h e t o t a l amount o f 1−b y t e c o m b i n a t i o n s , t h e amount

o f a c c e p t e d b y t e s and t h e amount o f r e j e c t e d b y t e s .

p r i n t (" T o t a l : " + s t r (l e n (b a d c h a r s)) + " \ n " + " G e n e r a t e d : " + s t r (l e n (f i l e s _ b c)))

p r i n t (" R e j e c t e d : " , l e n (b a d c h a r s) − l e n (f i l e s _ b c))

C r e a t e s e t s from t h e t a b l e s , compare them and p r i n t t h e

r e j e c t e d b y t e c o m b i n a t i o n s .

s e t 1 = s e t (b a d c h a r s)

s e t 2 = s e t (f i l e s _ b c)

m i s s i n g = l i s t (s o r t e d (s e t 1−s e t 2))

p r i n t (" R e j e c t e d b y t e s : " , ’ ’ . j o i n (m i s s i n g))

i f v a l _ c h o i c e == 2 :

p r i n t (" Checking RHOST")

v a l _ r h o s t = i n p u t (" E n t e r IP : ")

p r i n t (" Chosen a r c h i t e c t u r e : " + v a l _ a r c h)

p r i n t (" Chosen RHOST: " + v a l _ r h o s t)

v a l _ r h o s t = " r h o s t _ " + v a l _ r h o s t . r e p l a c e (" . " , " _ ")

C r e a t e a t a b l e o f g e n e r a t e d s h e l l c o d e f i l e s based on u s e r i n p u t .

p a t h = os . p a t h . a b s p a t h (os . getcwd ()) + " / " + v a l _ r h o s t + " / " + v a l _ a r c h + " / "

f i l e s = [f f o r f i n l i s t d i r (p a t h) i f i s f i l e (j o i n (pa th , f))]

S l i c e t h e used b y t e from t h e s h e l l c o d e f i l e n a m e

and c r e a t e a new t a b l e which c o n t a i n s t h e a c c e p t e d

b y t e c o m b i n a t i o n s .

f i l e s _ b c = []

f o r i i n f i l e s : f i l e s _ b c . append (" \ \ " + i [: 3])

P r i n t t h e t o t a l amount o f 1−b y t e c o m b i n a t i o n s , t h e amount

o f a c c e p t e d b y t e s and t h e amount o f r e j e c t e d b y t e s .

77

p r i n t (" T o t a l : " + s t r (l e n (b a d c h a r s)) + " \ n " + " G e n e r a t e d : " + s t r (l e n (f i l e s _ b c)))

p r i n t (" R e j e c t e d : " , l e n (b a d c h a r s) − l e n (f i l e s _ b c))

C r e a t e s e t s from t h e t a b l e s , compare them and p r i n t t h e

r e j e c t e d b y t e c o m b i n a t i o n s .

s e t 1 = s e t (b a d c h a r s)

s e t 2 = s e t (f i l e s _ b c)

m i s s i n g = l i s t (s o r t e d (s e t 1−s e t 2))

p r i n t (" R e j e c t e d b y t e s : " , ’ ’ . j o i n (m i s s i n g))

i f v a l _ c h o i c e == 3 :

p r i n t (" Checking LPORT")

v a l _ l p o r t = i n p u t (" E n t e r p o r t : ")

p r i n t (" Chosen a r c h i t e c t u r e : " + v a l _ a r c h)

p r i n t (" Chosen LPORT : " + v a l _ l p o r t)

v a l _ l p o r t = " l p o r t _ " + v a l _ l p o r t

C r e a t e a t a b l e o f g e n e r a t e d s h e l l c o d e f i l e s based on u s e r i n p u t .

p a t h = os . p a t h . a b s p a t h (os . getcwd ()) + " / " + v a l _ l p o r t + " / " + v a l _ a r c h + " / "

f i l e s = [f f o r f i n l i s t d i r (p a t h) i f i s f i l e (j o i n (pa th , f))]

S l i c e t h e used b y t e from t h e s h e l l c o d e f i l e n a m e

and c r e a t e a new t a b l e which c o n t a i n s t h e a c c e p t e d

b y t e c o m b i n a t i o n s .

f i l e s _ b c = []

f o r i i n f i l e s : f i l e s _ b c . append (" \ \ " + i [: 3])

P r i n t t h e t o t a l amount o f 1−b y t e c o m b i n a t i o n s , t h e amount

o f a c c e p t e d b y t e s and t h e amount o f r e j e c t e d b y t e s .

p r i n t (" T o t a l : " + s t r (l e n (b a d c h a r s)) + " \ n " + " G e n e r a t e d : " + s t r (l e n (f i l e s _ b c)))

p r i n t (" R e j e c t e d : " , l e n (b a d c h a r s) − l e n (f i l e s _ b c))

C r e a t e s e t s from t h e t a b l e s , compare them and p r i n t t h e

r e j e c t e d b y t e c o m b i n a t i o n s .

s e t 1 = s e t (b a d c h a r s)

s e t 2 = s e t (f i l e s _ b c)

m i s s i n g = l i s t (s o r t e d (s e t 1−s e t 2))

p r i n t (" R e j e c t e d b y t e s : " , ’ ’ . j o i n (m i s s i n g))

78

B Python script for generating shellcodes with MSFvenom
#! / u s r / b i n / py thon

i m p o r t os

S p e c i f y bad c h a r a c t e r s

’ badcha r s ’ i s a s t r i n g which c o n t a i n s bad c h a r a c t e r s

b a d c h a r s = ["No b a d c h a r s " , " \ \ x00 " , " \ \ x0a " , " \ \ x0d " , " \ \ x f f " , " \ \ x00 \ \ x0a " ,

" \ \ x00 \ \ x0d " , " \ \ x00 \ \ x f f " , " \ \ x0a \ \ x0d " , " \ \ x0a \ \ x f f " , " \ \ x0d \ \ x f f " , " Custom "]

d e f check (sc_name) :

" " " Th i s f u n c t i o n ch ec k s whe the r t h e s h e l l c o d e a l r e a d y e x i s t s o r n o t .

Args :

sc_name : F i l ename of t h e s h e l l c o d e t h a t i s unde r i n s p e c t i o n .

R e t u r n s :

boo l : True i f t h e f i l e e x i s t s , F a l s e i f i t does n o t e x i s t .

" " "

e x i s t s = os . p a t h . i s f i l e (’ . / ’ + sc_name)

r e t u r n e x i s t s

d e f c r e a t e _ s h e l l c o d e (s c _ f i l e) :

" " " Th i s f u n c t i o n c r e a t e s s h e l l c o d e s .

Format can be changed by c h a n g i n g t h e v a l u e o f c o d e _ f o r m a t .

User can choose whe the r o r n o t t o use bad c h a r s .

Th i s f u n c t i o n a l s o i n s p e c t s whe the r o r n o t t h e s h e l l c o d e a l r e a d y e x i s t s

and s k i p s t h e c r e a t i o n i f i t does . The i n s p e c t i o n i s done u s i n g a n o t h e r

f u n c t i o n c a l l e d check .

F u r t h e r i n f o r m a t i o n a b o u t t h e used msfvenom p a r a m e t e r s can be seen a t :

h t t p s : / / g i t h u b . com / r a p i d 7 / m e t a s p l o i t−f ramework / w ik i / How−to−use−msfvenom

Example :

One i t e r a t i o n o f t h e f o r loop i s :

msfvenom −p < s h e l l c o d e > −b <bad c h a r a c t e r s > −f c −o < f i l e n a m e >

Args :

sc_name : a t e x t f i l e which i n c l u d e s t h e names o f a l l t h e s h e l l c o d e s .

A t t r i b u t e s :

f i l e n a m e : f i l e n a m e f o r each s i n g u l a r s h e l l c o d e .

e x i s t s : b o o l e a n f o r c h e c k i n g i f t h e s h e l l c o d e a l r e a d y e x i s t s .

b a d c h a r s : bad c h a r a c t e r s t o be a v o i d e d .

" " "

f o r i i n s c _ f i l e :

f i l e n a m e = (bc + " _ " + i) . s t r i p () . r e p l a c e (" / " , " _ ") . r e p l a c e (" \ \ " , " ") + " . " + c o d e _ f o r m a t

e x i s t s = check (f i l e n a m e)

i f e x i s t s == True :

p r i n t (f i l e n a m e + " a l r e a d y e x i s t s ")

c o n t i n u e

e l i f bc == " no_bc " :

command = (" msfvenom −p " + " " + i . s t r i p () + " " + "− f " + c o d e _ f o r m a t + " " +

"−o " + " " + f i l e n a m e)

p r i n t (command)

os . sys tem (command)

e l s e :

command = (" msfvenom −p " + " " + i . s t r i p () + " " + "− f " + c o d e _ f o r m a t + " " +

"−b " + " " + " ’ " + bc + " ’ " + " " + "−o " + " " + f i l e n a m e)

79

p r i n t (command)

os . sys tem (command)

f o r (i , i t em) i n enumera t e (badcha r s , s t a r t = 1) : p r i n t (i , i t em)

c o d e _ f o r m a t = " e l f "

v a l _ b c = i n p u t (" Choose bad c h a r a c t e r : ")

v a l _ b c = i n t (v a l _ b c)

bc = b a d c h a r s [va l_bc −1]

p r i n t (bc + " \ n ")

i f bc == "No b a d c h a r s " : bc = " no_bc "

i f bc == " Custom " :

va l_cus tom_bc = i n p u t (" E n t e r bad c h a r a c t e r : ")

bc = va l_cus tom_bc

f i l e _ s c = open (’ f i l e s / msfv_p l . t x t ’ , ’ r ’)

c r e a t e _ s h e l l c o d e (f i l e _ s c)

f i l e _ s c . c l o s e ()

80

C Rejected bad bytes in each MSFvenom test

Rejected one byte combinations

x86

No rejections

x64

0x48

mips

0x01, 0x02, 0x04, 0x05, 0x0c, 0x21, 0x24, 0x28

arm

0x03, 0x04, 0x08, 0x1f, 0x20, 0x31, 0x44, 0x74, 0x9e, 0xa0, 0xe1, 0xe5, 0xea, 0xf0, 0xf9

arm64

0x00, 0x01, 0x02, 0x03, 0x07, 0x08, 0x0a, 0x0b, 0x0f, 0x10, 0x11, 0x180x19, 0x1b, 0x21,

0x2f, 0x35, 0x40, 0x41, 0x5c, 0x60, 0x62, 0x68, 0x69, 0x6e, 0x73, 0x80, 0x91, 0xa8, 0xaa,

0xc8, 0xd2, 0xd4, 0xe0, 0xe1, 0xe2, 0xe3, 0xf9

ppc

0x01, 0x02, 0x04, 0x05, 0x2a, 0x2c, 0x38, 0x3b, 0x3c, 0x40, 0x79, 0x7c0x7f, 0x82, 0xa5,

0xa6, 0xfd, 0xff

ppc64

0x01, 0x02, 0x03, 0x04, 0x08, 0x09, 0x0b, 0x0c, 0x11, 0x18, 0x190x1d, 0x21, 0x24, 0x25,

0x28, 0x2a, 0x2c, 0x2f, 0x37, 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x40, 0x41, 0x440x4f, 0x61,

0x62, 0x67, 0x68, 0x69, 0x6e, 0x73, 0x78, 0x79, 0x7c, 0x7d, 0x7e, 0x7f, 0x80, 0x81,

0x820x97, 0x98, 0xa0, 0xa1, 0xa3, 0xa5, 0xa6, 0xbe, 0xc3, 0xc8, 0xd0, 0xde, 0xe1, 0xe3,

0xec, 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff

sparc

0x03, 0x04, 0x12, 0x14, 0x15, 0x20, 0x23, 0x40, 0x9d, 0xa2, 0xbf, 0xe0, 0xea, 0xfb, 0xf

81

LHOST tests

x86, LHOST=192.168.1.1

0xc9

x86, LHOST=10.0.0.1

0xc9

x64, LHOST=192.168.1.1

0x48, 0xff

x64, LHOST=10.0.0.1

0x48, 0xff

mips, LHOST=192.168.1.1

0x01, 0x02, 0x03, 0x04, 0x05, 0x08, 0x0b, 0x0c, 0x10, 0x20, 0x21, 0x24, 0x27, 0x28, 0x33,

0x40, 0x4a, 0x58, 0x60, 0x80, 0xc0, 0xea, 0xef, 0xfc, 0xff

mips, LHOST=10.0.0.1

0x01, 0x02, 0x03, 0x04, 0x05, 0x08, 0x0b, 0x0c, 0x10, 0x20, 0x21, 0x24, 0x27, 0x28, 0x33,

0x40, 0x4a, 0x58, 0x60, 0x80, 0x0a, 0xea, 0xef, 0xfc, 0xff

arm, LHOST=192.168.1.1

0x00, 0x01, 0x02, 0x04, 0x05, 0x06, 0x0a, 0x0d, 0x0e, 0x10, 0x11, 0x14, 0x20, 0x2f, 0x3b,

0x45, 0x4d, 0x50, 0x55, 0x5a, 0x5c, 0x60, 0x61, 0x62, 0x68, 0x69, 0x6e, 0x73, 0x7e, 0x80,

0x86, 0x8f, 0xa0, 0xa8, 0xaa, 0xc0, 0xd0, 0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xeb, 0xef,

0xf8, 0xff

arm, LHOST=10.0.0.1

0x00, 0x01, 0x02, 0x04, 0x05, 0x06, 0x0a, 0x0d, 0x0e, 0x10, 0x11, 0x14, 0x20, 0x2f, 0x3b,

0x45, 0x4d, 0x50, 0x55, 0x5a, 0x5c, 0x60, 0x61, 0x62, 0x68, 0x69, 0x6e, 0x73, 0x7e, 0x80,

0x86, 0x8f, 0xa0, 0xaa, 0xc0, 0xd0, 0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xeb, 0xef, 0xf8,

0xff

arm64, LHOST=192.168.1.1

0x00, 0x01, 0x02, 0x03, 0x07, 0x08, 0x0b, 0x10, 0x11, 0x18, 0x19, 0x1b, 0x21, 0x2f, 0x35,

82

0x40, 0x41, 0x5c, 0x60, 0x62, 0x68, 0x69, 0x6e, 0x73, 0x80, 0x91, 0xa8, 0xaa, 0xc0, 0xc8,

0xd2, 0xd4, 0xe0, 0xe1, 0xe2, 0xe3, 0xf9

arm64, LHOST=10.0.0.1

0x00, 0x01, 0x02, 0x03, 0x07, 0x08, 0x0a, 0x0b, 0x10, 0x11, 0x18, 0x19, 0x1b, 0x21, 0x2f,

0x35, 0x40, 0x41, 0x5c, 0x60, 0x62, 0x68, 0x69, 0x6e, 0x73, 0x80, 0x91, 0xa8, 0xaa, 0xc8,

0xd2, 0xd4, 0xe0, 0xe1, 0xe2, 0xe3, 0xf9

ppc, LHOST=192.168.1.1

0x01, 0x02, 0x04, 0x2a, 0x2c, 0x38, 0x3b, 0x40, 0x79, 0x7c, 0x7f, 0x82, 0xa5, 0xa6, 0xc0,

0xe0, 0xfd, 0xff

ppc, LHOST=10.0.0.1

0x01, 0x02, 0x04, 0x2a, 0x2c, 0x38, 0x3b, 0x40, 0x79, 0x7c, 0x7f, 0x82, 0xa5, 0xa6, 0xc0,

0xe0, 0xfd, 0xff

ppc64, LHOST=192.168.1.1

0x01, 0x02, 0x03, 0x04, 0x0b, 0x0c, 0x11, 0x1b, 0x1d, 0x21, 0x24, 0x25, 0x2a, 0x2c, 0x2f,

0x35, 0x37, 0x38, 0x3a, 0x3b, 0x3d, 0x3e, 0x40, 0x41, 0x43, 0x44, 0x5c, 0x61, 0x62, 0x64,

0x67, 0x68, 0x69, 0x6e, 0x73, 0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f, 0x80, 0x81,

0x82, 0x93, 0x96, 0x98, 0x9d, 0xa0, 0xa1, 0xa5, 0xa6, 0xa8, 0xbe, 0xc0, 0xc1, 0xc8, 0xd3,

0xdb, 0xde, 0xe0, 0xe1, 0xec, 0xf7, 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff

ppc64, LHOST=10.0.0.1

0x00, 0x01, 0x02, 0x03, 0x04, 0x0a, 0x0b, 0x0c, 0x11, 0x1b, 0x1d, 0x21, 0x24, 0x25, 0x2a,

0x2c, 0x2f, 0x35, 0x37, 0x38, 0x3a, 0x3b, 0x3d, 0x3e, 0x40, 0x41, 0x43, 0x44, 0x5c, 0x61,

0x62, 0x64, 0x67, 0x68, 0x69, 0x6e, 0x73, 0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f,

0x80, 0x81, 0x82, 0x93, 0x96, 0x98, 0x9d, 0xa0, 0xa1, 0xa5, 0xa6, 0xbe, 0xc0, 0xc1, 0xc8,

0xd3, 0xdb, 0xde, 0xe0, 0xe1, 0xec, 0xf7, 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff

sparc, LHOST=192.168.1.1

0x03, 0x12, 0x14, 0x20, 0x23, 0xa2, 0xbf, 0xe0, 0xff

sparc, LHOST=10.0.0.1

0x03, 0x12, 0x14, 0x20, 0x23, 0xa2, 0xbf, 0xe0, 0xff

83

RHOST tests

x86, no RHOST

No rejections

x86, RHOST=124.173.232.109

No rejections

x64, no RHOST

0x48, 0xff

x64, RHOST=124.173.232.109

0x48, 0xff

mips, no RHOST

0x01, 0x02, 0x04, 0x05, 0x0c, 0x10, 0x20, 0x21, 0x23, 0x24, 0x27, 0x28, 0x2f, 0x31, 0xc0,

0xef, 0xf0, 0xfc, 0xff

mips, RHOST=124.173.232.109

0x01, 0x02, 0x04, 0x05, 0x0c, 0x10, 0x20, 0x21, 0x23, 0x24, 0x27, 0x28, 0x2f, 0x31, 0xc0,

0xef, 0xf0, 0xfc, 0xff

arm, no RHOST

0x00, 0x01, 0x02, 0x03, 0x04, 0x06, 0x07, 0x0c, 0x0d, 0x10, 0x11, 0x19, 0x20, 0x22, 0x26,

0x2f, 0x30, 0x40, 0x41, 0x42, 0x4d, 0x50, 0x52, 0x54, 0x5c, 0x63, 0x70, 0x81, 0x82, 0x87,

0x8d, 0x8f, 0x9d, 0x9f, 0xa0, 0xb0, 0xc0, 0xd0, 0xd4, 0xda, 0xe0, 0xe1, 0xe2, 0xe3, 0xe5,

0xea, 0xef, 0xf0, 0xf7, 0xfa, 0xff

arm, RHOST=124.173.232.109

0x00, 0x01, 0x02, 0x03, 0x04, 0x06, 0x07, 0x0c, 0x0d, 0x10, 0x11, 0x19, 0x20, 0x22, 0x26,

0x2f, 0x30, 0x40, 0x41, 0x42, 0x4d, 0x50, 0x52, 0x54, 0x5c, 0x63, 0x70, 0x81, 0x82, 0x87,

0x8d, 0x8f, 0x9d, 0x9f, 0xa0, 0xb0, 0xc0, 0xd0, 0xd4, 0xda, 0xe0, 0xe1, 0xe2, 0xe3, 0xe5,

0xea, 0xef, 0xf0, 0xf7, 0xfa, 0xff

ppc, no RHOST

0x01, 0x02, 0x04, 0x05, 0x2a, 0x2c, 0x38, 0x3b, 0x40, 0x60, 0x79, 0x7c, 0x7f, 0x82, 0x90,

84

0xa5, 0xa6, 0xac, 0xe0, 0xe8, 0xf8, 0xfd, 0xff

ppc, RHOST=124.173.232.109

0x01, 0x02, 0x04, 0x05, 0x2a, 0x2c, 0x38, 0x3b, 0x40, 0x60, 0x79, 0x7c, 0x7f, 0x82, 0x90,

0xa5, 0xa6, 0xac, 0xe0, 0xe8, 0xf8, 0xfd, 0xff

ppc64, no RHOST

0x01, 0x02, 0x03, 0x05, 0x06, 0x0b, 0x0c, 0x11, 0x1b, 0x1d, 0x21, 0x24, 0x25, 0x2a, 0x2c,

0x2f, 0x36, 0x37, 0x38, 0x3b, 0x3d, 0x3e, 0x40, 0x41, 0x44, 0x5c, 0x61, 0x62, 0x64, 0x67,

0x68, 0x69, 0x6e, 0x73, 0x75, 0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f, 0x80, 0x81,

0x82, 0x96, 0x97, 0x98, 0x9d, 0xa0, 0xa1, 0xa3, 0xa5, 0xa6, 0xab, 0xbe, 0xc1, 0xc8, 0xdb,

0xde, 0xe0, 0xe1, 0xec, 0xf7, 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff

ppc64, RHOST=124.173.232.109

0x01, 0x02, 0x03, 0x05, 0x06, 0x0b, 0x0c, 0x11, 0x1b, 0x1d, 0x21, 0x24, 0x25, 0x2a, 0x2c,

0x2f, 0x36, 0x37, 0x38, 0x3b, 0x3d, 0x3e, 0x40, 0x41, 0x44, 0x5c, 0x61, 0x62, 0x64, 0x67,

0x68, 0x69, 0x6e, 0x73, 0x75, 0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f, 0x80, 0x81,

0x82, 0x96, 0x97, 0x98, 0x9d, 0xa0, 0xa1, 0xa3, 0xa5, 0xa6, 0xab, 0xbe, 0xc1, 0xc8, 0xdb,

0xde, 0xe0, 0xe1, 0xec, 0xf7, 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff

sparc, no RHOST

0x03, 0x12, 0x14, 0x20, 0x23, 0x40, 0xa2, 0xbf, 0xe0, 0xff

sparc, RHOST=124.173.232.109

0x03, 0x12, 0x14, 0x20, 0x23, 0x40, 0xa2, 0xbf, 0xe0, 0xff

85

LPORT tests

x86, LPORT=1234

No rejections

x86, LPORT=10

No rejections

x64, LPORT=1234

0x48, 0xff

x64, LPORT=10

0x48, 0xff

mips, LPORT=1234

0x01, 0x02, 0x04, 0x05, 0x0c, 0x10, 0x20, 0x21, 0x23, 0x24, 0x27, 0x28, 0x2f, 0x31, 0xc0,

0xef, 0xf0, 0xfc, 0xff

mips, LPORT=10

0x01, 0x02, 0x04, 0x05, 0x0a, 0x0c, 0x10, 0x20, 0x21, 0x23, 0x24, 0x27, 0x28, 0x2f, 0x31,

0xc0, 0xef, 0xf0, 0xfc, 0xff

arm, LPORT=1234

0x00, 0x01, 0x02, 0x03, 0x04, 0x06, 0x07, 0x0c, 0x0d, 0x10, 0x19, 0x20, 0x22, 0x26, 0x2f,

0x30, 0x40, 0x41, 0x42, 0x4d, 0x50, 0x52, 0x54, 0x63, 0x70, 0x81, 0x82, 0x87, 0x8d, 0x8f,

0x9d, 0x9f, 0xa0, 0xb0, 0xc0, 0xd0, 0xd2, 0xd4, 0xda, 0xe0, 0xe1, 0xe2, 0xe3, 0xe5, 0xea,

0xef, 0xf0, 0xf7, 0xfa, 0xff

arm, LPORT=10

0x00, 0x01, 0x02, 0x03, 0x04, 0x06, 0x07, 0x0a, 0x0c, 0x0d, 0x10, 0x19, 0x20, 0x22, 0x26,

0x2f, 0x30, 0x40, 0x41, 0x42, 0x4d, 0x50, 0x52, 0x54, 0x63, 0x70, 0x81, 0x82, 0x87, 0x8d,

0x8f, 0x9d, 0x9f, 0xa0, 0xb0, 0xc0, 0xd0, 0xd4, 0xda, 0xe0, 0xe1, 0xe2, 0xe3, 0xe5, 0xea,

0xef, 0xf0, 0xf7, 0xfa, 0xff

ppc, LPORT=1234

0x01, 0x02, 0x04, 0x05, 0x2a, 0x2c, 0x38, 0x3b, 0x40, 0x60, 0x79, 0x7c, 0x7f, 0x82, 0x90,

86

0xa5, 0xa6, 0xac, 0xe0, 0xe8, 0xf8, 0xfd, 0xff

ppc, LPORT=10

0x01, 0x02, 0x04, 0x05, 0x2a, 0x2c, 0x38, 0x3b, 0x40, 0x60, 0x79, 0x7c, 0x7f, 0x82, 0x90,

0xa5, 0xa6, 0xac, 0xe0, 0xe8, 0xf8, 0xfd, 0xff

ppc64, LPORT=1234

0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x0b, 0x0c, 0x11, 0x1b, 0x1d, 0x21, 0x24, 0x25, 0x2a,

0x2c, 0x2f, 0x36, 0x37, 0x38, 0x3b, 0x3d, 0x3e, 0x40, 0x41, 0x44, 0x61, 0x62, 0x64, 0x67,

0x68, 0x69, 0x6e, 0x73, 0x75, 0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f, 0x80, 0x81,

0x82, 0x96, 0x97, 0x98, 0x9d, 0xa0, 0xa1, 0xa3, 0xa5, 0xa6, 0xab, 0xbe, 0xc1, 0xc8, 0xd2,

0xdb, 0xde, 0xe0, 0xe1, 0xec, 0xf7, 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff

ppc64, LPORT=10

0x00, 0x01, 0x02, 0x03, 0x05, 0x06, 0x0a, 0x0b, 0x0c, 0x11, 0x1b, 0x1d, 0x21, 0x24, 0x25,

0x2a, 0x2c, 0x2f, 0x36, 0x37, 0x38, 0x3b, 0x3d, 0x3e, 0x40, 0x41, 0x44, 0x61, 0x62, 0x64,

0x67, 0x68, 0x69, 0x6e, 0x73, 0x75, 0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f, 0x80,

0x81, 0x82, 0x96, 0x97, 0x98, 0x9d, 0xa0, 0xa1, 0xa3, 0xa5, 0xa6, 0xab, 0xbe, 0xc1, 0xc8,

0xdb, 0xde, 0xe0, 0xe1, 0xec, 0xf7, 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff

sparc, LPORT=1234

0x03, 0x12, 0x14, 0x20, 0x23, 0x40, 0xa2, 0xbf, 0xe0, 0xfd, 0xff

sparc, LPORT=10

0x03, 0x12, 0x14, 0x20, 0x23, 0x40, 0xa2, 0xbf, 0xe0, 0xff

87

	1 Introduction
	1.1 Research questions
	1.2 Organization

	2 Overview of shellcode
	2.1 Writing shellcode
	2.2 Shellcode-based attacks
	2.2.1 Buffer overflow
	2.2.2 Shellcode embedded documents

	2.3 Shellcode analysis

	3 Overview of artificial intelligence
	4 Overview of machine learning
	4.1 Supervised learning
	4.2 Unsupervised learning
	4.3 Semi-supervised learning
	4.4 Reinforcement learning
	4.5 Deep learning
	4.6 Machine learning algorithms
	4.6.1 Decision trees
	4.6.2 Random forest
	4.6.3 Rule-based classifiers
	4.6.4 Naïve Bayes classifiers
	4.6.5 K-nearest neighbor classifiers
	4.6.6 Neural networks
	4.6.7 Linear discriminant analysis
	4.6.8 Support vector machine
	4.6.9 K-means clustering

	4.7 Machine learning based code analysis

	5 Methodology and research data
	5.1 Reliability and validity
	5.2 Research environment
	5.3 MSFvenom bad character analysis
	5.4 Creating the shellcode database
	5.5 Testing a machine learning based ISA detection system

	6 Results
	6.1 Detection results
	6.2 Results from testing shellcodes with the code-only option
	6.3 Results from testing shellcodes with the fragment option
	6.4 Analyzing the results of the scans
	6.5 Results from testing the classifiers
	6.6 Results of MSFvenom bad character analysis

	7 Discussion
	7.1 Limitations
	7.2 Future work

	8 Conclusion
	Bibliography
	Appendices
	A Python scripts used in bad character analysis of MSFvenom
	B Python script for generating shellcodes with MSFvenom
	C Rejected bad bytes in each MSFvenom test

