dc.contributor.author | Antonelli, Gioacchino | |
dc.contributor.author | Le Donne, Enrico | |
dc.date.accessioned | 2021-06-07T08:19:58Z | |
dc.date.available | 2021-06-07T08:19:58Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Antonelli, G., & Le Donne, E. (2020). Pauls rectifiable and purely Pauls unrectifiable smooth hypersurfaces. <i>Nonlinear Analysis : Theory, Methods and Applications</i>, <i>200</i>, Article 111983. <a href="https://doi.org/10.1016/j.na.2020.111983" target="_blank">https://doi.org/10.1016/j.na.2020.111983</a> | |
dc.identifier.other | CONVID_35775322 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/76297 | |
dc.description.abstract | This paper is related to the problem of finding a good notion of rectifiability in sub-Riemannian geometry. In particular, we study which kind of results can be expected for smooth hypersurfaces in Carnot groups. Our main contribution will be a consequence of the following result: there exists a -hypersurface without characteristic points that has uncountably many pairwise non-isomorphic tangent groups on every positive-measure subset. The example is found in a Carnot group of topological dimension 8, it has Hausdorff dimension 12 and so we use on it the Hausdorff measure . As a consequence, we show that any Lipschitz map defined on a subset of a Carnot group of Hausdorff dimension 12, with values in , has negligible image with respect to the Hausdorff measure . In particular, we deduce that cannot be Lipschitz parametrizable by countably many maps each defined on some subset of some Carnot group of Hausdorff dimension 12. As main consequence we have that a notion of rectifiability proposed by S. Pauls is not equivalent to one proposed by B. Franchi, R. Serapioni and F. Serra Cassano, at least for arbitrary Carnot groups. In addition, we show that, given a subset of a homogeneous subgroup of Hausdorff dimension 12 of a Carnot group, every bi-Lipschitz map satisfies . Finally, we prove that such an example does not exist in Heisenberg groups: we prove that all -hypersurfaces in with are countably -rectifiable according to Pauls’ definition, even with bi-Lipschitz maps. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Elsevier | |
dc.relation.ispartofseries | Nonlinear Analysis : Theory, Methods and Applications | |
dc.rights | CC BY 4.0 | |
dc.subject.other | Carnot groups | |
dc.subject.other | codimension-one rectifiability | |
dc.subject.other | smooth hypersurface | |
dc.subject.other | intrinsic rectifiable set | |
dc.subject.other | intrinsic Lipschitz graph | |
dc.title | Pauls rectifiable and purely Pauls unrectifiable smooth hypersurfaces | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-202106073513 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.oppiaine | Matematiikka | fi |
dc.contributor.oppiaine | Geometrinen analyysi ja matemaattinen fysiikka | fi |
dc.contributor.oppiaine | Analyysin ja dynamiikan tutkimuksen huippuyksikkö | fi |
dc.contributor.oppiaine | Mathematics | en |
dc.contributor.oppiaine | Geometric Analysis and Mathematical Physics | en |
dc.contributor.oppiaine | Analysis and Dynamics Research (Centre of Excellence) | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 0362-546X | |
dc.relation.volume | 200 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2020 the Authors | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.relation.grantnumber | 713998 | |
dc.relation.grantnumber | 713998 | |
dc.relation.grantnumber | 322898 | |
dc.relation.grantnumber | 288501 | |
dc.relation.projectid | info:eu-repo/grantAgreement/EC/H2020/713998/EU//GeoMeG | |
dc.subject.yso | mittateoria | |
dc.subject.yso | differentiaaligeometria | |
dc.subject.yso | ryhmäteoria | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p13386 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p16682 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p12497 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1016/j.na.2020.111983 | |
dc.relation.funder | European Commission | en |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Euroopan komissio | fi |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Suomen Akatemia | fi |
jyx.fundingprogram | ERC Starting Grant | en |
jyx.fundingprogram | Academy Project, AoF | en |
jyx.fundingprogram | Academy Research Fellow, AoF | en |
jyx.fundingprogram | ERC Starting Grant | fi |
jyx.fundingprogram | Akatemiahanke, SA | fi |
jyx.fundingprogram | Akatemiatutkija, SA | fi |
jyx.fundinginformation | E.L.D. was partially supported by the Academy of Finland (grant 288501 ‘Geometry of subRiemannian groups’ and by grant 322898 ‘Sub-Riemannian Geometry via Metric-geometry and Lie-group Theory’) and by the European Research Council(ERC Starting Grant 713998 GeoMeG ‘Geometry of Metric Groups’). | |
dc.type.okm | A1 | |