Show simple item record

dc.contributor.authorTirronen, Ville
dc.date.accessioned2021-05-25T13:21:24Z
dc.date.available2021-05-25T13:21:24Z
dc.date.issued2008
dc.identifier.isbn978-951-39-8102-0
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/75945
dc.description.abstractIn recent years meta-heuristic optimization has gained popularity in industry as well as academia due to increased computational resources and advances in the algorithms employed. As it has become apparent that no single algorithm can be declared the best in all cases, a rise in hybrid, or memetic algorithms that can be designed on case by case basis can be observed. In this work memetic algorithms are studied in depth in the context of Differential Evolution Algorithm that is among the best modern generic optimization algorithms. A whole setting of Memetic Differential Evolution methods is discovered and empirically validated with the inclusion of fitness diversity based co-ordination and stochastic adaptation schemes. This work also studies the industrial problem of real-time paper web defect detection. This is a problem that is extremely constrained in time and as such permits no complex runtime solution. Thus, the problem has been formulated as an optimization problem utilizing a simple and efficient run-time model that is tuned to precision with rather more complex methods before applying it in the industrial field. The tools used for this are meta-heuristic optimization and especially, memetic optimization.en
dc.language.isoeng
dc.relation.ispartofseriesJyväskylä studies in computing
dc.relation.haspart<b>Artikkeli I:</b> Tirronen, V., Neri, F., Kärkkäinen, T., Valjus, K., & Rossi, T. (2007). A Memetic Differential Evolution in Filter Design for Defect Detection in Paper Production. In <i>M. G. E. al (Ed.), Applications of Evolutionary Computing. Proceedings of EvoWorkshops 2007 (pp. 320-329). Springer. Lecture Notes in Computer Science, 4448. </i> DOI: <a href="https://doi.org/10.1007/978-3-540-71805-5_35"target="_blank"> 10.1007/978-3-540-71805-5_35</a>
dc.relation.haspart<b>Artikkeli II:</b> Tirronen, V., Neri, F., Kärkkäinen, T., Valjus, K., & Rossi, T. (2008). An Enhanced Memetic Differential Evolution in Filter Design for Defect Detection in Paper Production. <i>Evolutionary Computation Journal, 16(4), 529-555.</i> DOI: <a href="https://doi.org/10.1162/evco.2008.16.4.529"target="_blank"> 10.1162/evco.2008.16.4.529</a>
dc.relation.haspart<b>Artikkeli III:</b> Caponio, A., Neri, F., & Tirronen, V. (2008). Super-fit control adaptation in memetic differential evolution frameworks. <i>Soft Computing - A Fusion of Foundations, Methodologies and Applications, 13, 811.</i> DOI: <a href="https://doi.org/10.1007/s00500-008-0357-1"target="_blank"> 10.1007/s00500-008-0357-1</a>
dc.relation.haspart<b>Artikkeli IV:</b> Neri, F., & Tirronen, V. (2009). Memetic Differential Evolution Frameworks in Filter Design for Defect Detection in Paper Production. In <i>Studies in Computational Intelligence (pp. 113-131). Springer.</i> DOI: <a href="https://doi.org/10.1007/978-3-642-01636-3_7"target="_blank"> 10.1007/978-3-642-01636-3_7</a>
dc.relation.haspart<b>Artikkeli V:</b> Neri, F., Tirronen, V., Kärkkäinen, T., & Rossi, T. (2007). Fitness Diversity Based Adaptation in Multimeme Algorithms: A Comparative Study. In <i>Proceedings of the IEEE Congress on Evolutionary Computation,Special Session on Memetic Algorithms, Singapore (pp. 2374-2381).</i> DOI: <a href="https://doi.org/10.1109/cec.2007.4424768"target="_blank"> 10.1109/cec.2007.4424768</a>
dc.relation.haspart<b>Artikkeli VI:</b> Tirronen, V., Neri, F., Valjus, K., & Kärkkäinen, T. (2008). On Memetic Differential Evolution Frameworks: a Study of Advantages and Limitations in Hybridization. In <i>Proceedings of the IEEE World Congress on Computational Intelligence (pp. 2135-2142).</i> DOI: <a href="https://doi.org/10.1109/cec.2008.4631082"target="_blank"> 10.1109/cec.2008.4631082</a>
dc.relation.haspart<b>Artikkeli VII:</b> Tirronen, V., Neri, F., Valjus, K., & Kärkkäinen, T. (2008). The "Natura Non Facit Saltus" Principle in Memetic Computing. In <i>Proceedings of the IEEE World Congress on Computational Intelligence (pp. 3882-3889).</i> DOI: <a href="https://doi.org/10.1109/cec.2008.4631325"target="_blank"> 10.1109/cec.2008.4631325</a>
dc.relation.haspart<b>Artikkeli VIII:</b> Tirronen, V., & Neri, F. (2009). Differential Evolution with Fitness Diversity Self-Adaptation. In <i>Nature-Inspired Algorithms for Optimisation (pp. 199-234). Springer. Studies in Computational Intelligence, 193.</i> DOI: <a href="https://doi.org/10.1007/978-3-642-00267-0_7"target="_blank"> 10.1007/978-3-642-00267-0_7</a>
dc.relation.haspart<b>Artikkeli IX:</b> Tirronen, V., & Neri, F. (2007). A Fast Randomized Memetic Algorithm for Highly Multimodal Problems. In <i>Proceedings of EuroGEN 2007, Jyväskylä, Finland (pp. pg. 27).</i>
dc.rightsIn Copyright
dc.titleGlobal optimization using memetic differential evolution with applications to low level machine vision
dc.typedoctoral thesis
dc.identifier.urnURN:ISBN:978-951-39-8102-0
dc.contributor.yliopistoUniversity of Jyväskyläen
dc.contributor.yliopistoJyväskylän yliopistofi
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.rights.accesslevelopenAccess
dc.type.publicationdoctoralThesis
dc.rights.urlhttps://rightsstatements.org/page/InC/1.0/
dc.date.digitised2021


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright