dc.contributor.author | Abdi, Younes | |
dc.contributor.author | Ristaniemi, Tapani | |
dc.date.accessioned | 2021-05-25T04:20:55Z | |
dc.date.available | 2021-05-25T04:20:55Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Abdi, Y., & Ristaniemi, T. (2021). Modeling and Mitigating Errors in Belief Propagation for Distributed Detection. <i>IEEE Transactions on Communications</i>, <i>69</i>(5), 3286-3297. <a href="https://doi.org/10.1109/TCOMM.2021.3056679" target="_blank">https://doi.org/10.1109/TCOMM.2021.3056679</a> | |
dc.identifier.other | CONVID_51396335 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/75927 | |
dc.description.abstract | We study the behavior of the belief-propagation (BP) algorithm affected by erroneous data exchange in a wireless sensor network (WSN). The WSN conducts a distributed multidimensional hypothesis test over binary random variables. The joint statistical behavior of the sensor observations is modeled by a Markov random field whose parameters are used to build the BP messages exchanged between the sensing nodes. Through linearization of the BP message-update rule, we analyze the behavior of the resulting erroneous decision variables and derive closed-form relationships that describe the impact of stochastic errors on the performance of the BP algorithm. We then develop a decentralized distributed optimization framework to enhance the system performance by mitigating the impact of errors via a distributed linear data-fusion scheme. Finally, we compare the results of the proposed analysis with the existing works and visualize, via computer simulations, the performance gain obtained by the proposed optimization. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | |
dc.relation.ispartofseries | IEEE Transactions on Communications | |
dc.rights | CC BY 4.0 | |
dc.subject.other | distributed systems | |
dc.subject.other | cooperative communications | |
dc.subject.other | likelihood-ratio test | |
dc.subject.other | communication errors | |
dc.subject.other | computation errors | |
dc.subject.other | blind signal processing | |
dc.subject.other | message-passing algorithms | |
dc.subject.other | linear data-fusion | |
dc.subject.other | factor graphs | |
dc.title | Modeling and Mitigating Errors in Belief Propagation for Distributed Detection | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-202105253186 | |
dc.contributor.laitos | Informaatioteknologian tiedekunta | fi |
dc.contributor.laitos | Faculty of Information Technology | en |
dc.contributor.oppiaine | Tietotekniikka | fi |
dc.contributor.oppiaine | Mathematical Information Technology | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 3286-3297 | |
dc.relation.issn | 0090-6778 | |
dc.relation.numberinseries | 5 | |
dc.relation.volume | 69 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © Authors, 2021 | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.subject.yso | optimointi | |
dc.subject.yso | signaalinkäsittely | |
dc.subject.yso | langaton tiedonsiirto | |
dc.subject.yso | algoritmit | |
dc.subject.yso | hajautetut järjestelmät | |
dc.subject.yso | sensoriverkot | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p13477 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p12266 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p5445 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p14524 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p21082 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p24338 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1109/TCOMM.2021.3056679 | |
dc.type.okm | A1 | |