Show simple item record

dc.contributor.authorAbdi, Younes
dc.contributor.authorRistaniemi, Tapani
dc.date.accessioned2021-05-25T04:20:55Z
dc.date.available2021-05-25T04:20:55Z
dc.date.issued2021
dc.identifier.citationAbdi, Y., & Ristaniemi, T. (2021). Modeling and Mitigating Errors in Belief Propagation for Distributed Detection. <i>IEEE Transactions on Communications</i>, <i>69</i>(5), 3286-3297. <a href="https://doi.org/10.1109/TCOMM.2021.3056679" target="_blank">https://doi.org/10.1109/TCOMM.2021.3056679</a>
dc.identifier.otherCONVID_51396335
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/75927
dc.description.abstractWe study the behavior of the belief-propagation (BP) algorithm affected by erroneous data exchange in a wireless sensor network (WSN). The WSN conducts a distributed multidimensional hypothesis test over binary random variables. The joint statistical behavior of the sensor observations is modeled by a Markov random field whose parameters are used to build the BP messages exchanged between the sensing nodes. Through linearization of the BP message-update rule, we analyze the behavior of the resulting erroneous decision variables and derive closed-form relationships that describe the impact of stochastic errors on the performance of the BP algorithm. We then develop a decentralized distributed optimization framework to enhance the system performance by mitigating the impact of errors via a distributed linear data-fusion scheme. Finally, we compare the results of the proposed analysis with the existing works and visualize, via computer simulations, the performance gain obtained by the proposed optimization.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.ispartofseriesIEEE Transactions on Communications
dc.rightsCC BY 4.0
dc.subject.otherdistributed systems
dc.subject.othercooperative communications
dc.subject.otherlikelihood-ratio test
dc.subject.othercommunication errors
dc.subject.othercomputation errors
dc.subject.otherblind signal processing
dc.subject.othermessage-passing algorithms
dc.subject.otherlinear data-fusion
dc.subject.otherfactor graphs
dc.titleModeling and Mitigating Errors in Belief Propagation for Distributed Detection
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202105253186
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineMathematical Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange3286-3297
dc.relation.issn0090-6778
dc.relation.numberinseries5
dc.relation.volume69
dc.type.versionpublishedVersion
dc.rights.copyright© Authors, 2021
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysooptimointi
dc.subject.ysosignaalinkäsittely
dc.subject.ysolangaton tiedonsiirto
dc.subject.ysoalgoritmit
dc.subject.ysohajautetut järjestelmät
dc.subject.ysosensoriverkot
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p13477
jyx.subject.urihttp://www.yso.fi/onto/yso/p12266
jyx.subject.urihttp://www.yso.fi/onto/yso/p5445
jyx.subject.urihttp://www.yso.fi/onto/yso/p14524
jyx.subject.urihttp://www.yso.fi/onto/yso/p21082
jyx.subject.urihttp://www.yso.fi/onto/yso/p24338
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1109/TCOMM.2021.3056679
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0