dc.contributor.author | Le Donne, Enrico | |
dc.contributor.author | Moisala, Terhi | |
dc.date.accessioned | 2021-05-19T11:26:01Z | |
dc.date.available | 2021-05-19T11:26:01Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Le Donne, E., & Moisala, T. (2021). Semigenerated Carnot algebras and applications to sub-Riemannian perimeter. <i>Mathematische Zeitschrift</i>, <i>299</i>(3-4), 2257-2285. <a href="https://doi.org/10.1007/s00209-021-02744-4" target="_blank">https://doi.org/10.1007/s00209-021-02744-4</a> | |
dc.identifier.other | CONVID_83393804 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/75757 | |
dc.description.abstract | This paper contributes to the study of sets of finite intrinsic perimeter in Carnot groups. Our intent is to characterize in which groups the only sets with constant intrinsic normal are the vertical half-spaces. Our viewpoint is algebraic: such a phenomenon happens if and only if the semigroup generated by each horizontal half-space is a vertical half-space. We call semigenerated those Carnot groups with this property. For Carnot groups of nilpotency step 3 we provide a complete characterization of semigeneration in terms of whether such groups do not have any Engel-type quotients. Engel-type groups, which are introduced here, are the minimal (in terms of quotients) counterexamples. In addition, we give some sufficient criteria for semigeneration of Carnot groups of arbitrary step. For doing this, we define a new class of Carnot groups, which we call type (◊)(◊) and which generalizes the previous notion of type (⋆)(⋆) defined by M. Marchi. As an application, we get that in type (◊)(◊) groups and in step 3 groups that do not have any Engel-type algebra as a quotient, one achieves a strong rectifiability result for sets of finite perimeter in the sense of Franchi, Serapioni, and Serra-Cassano. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Springer | |
dc.relation.ispartofseries | Mathematische Zeitschrift | |
dc.rights | CC BY 4.0 | |
dc.subject.other | Carnot algebra | |
dc.subject.other | horizontal half-space | |
dc.subject.other | semigroup generated | |
dc.subject.other | Lie wedge | |
dc.subject.other | constant intrinsic normal | |
dc.subject.other | finite sub-Riemannian perimeter | |
dc.subject.other | Engel-type algebras | |
dc.subject.other | tipe diamond | |
dc.subject.other | trimmed algebra | |
dc.title | Semigenerated Carnot algebras and applications to sub-Riemannian perimeter | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-202105193022 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.oppiaine | Geometrinen analyysi ja matemaattinen fysiikka | fi |
dc.contributor.oppiaine | Matematiikka | fi |
dc.contributor.oppiaine | Analyysin ja dynamiikan tutkimuksen huippuyksikkö | fi |
dc.contributor.oppiaine | Geometric Analysis and Mathematical Physics | en |
dc.contributor.oppiaine | Mathematics | en |
dc.contributor.oppiaine | Analysis and Dynamics Research (Centre of Excellence) | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 2257-2285 | |
dc.relation.issn | 0025-5874 | |
dc.relation.numberinseries | 3-4 | |
dc.relation.volume | 299 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © The Author(s) 2021 | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.subject.yso | mittateoria | |
dc.subject.yso | differentiaaligeometria | |
dc.subject.yso | ryhmäteoria | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p13386 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p16682 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p12497 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1007/s00209-021-02744-4 | |
jyx.fundinginformation | Open access funding provided by University of Jyväskylä (JYU). | |
dc.type.okm | A1 | |