Näytä suppeat kuvailutiedot

dc.contributor.authorTerziyan, Vagan
dc.contributor.authorNikulin, Anton
dc.date.accessioned2021-04-16T07:16:21Z
dc.date.available2021-04-16T07:16:21Z
dc.date.issued2021
dc.identifier.citationTerziyan, V., & Nikulin, A. (2021). Semantics of Voids within Data : Ignorance-Aware Machine Learning. <i>Isprs International Journal of Geo-Information</i>, <i>10</i>(4), Article 246. <a href="https://doi.org/10.3390/ijgi10040246 " target="_blank">https://doi.org/10.3390/ijgi10040246 </a>
dc.identifier.otherCONVID_66397822
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/75078
dc.description.abstractOperating with ignorance is an important concern of geographical information science when the objective is to discover knowledge from the imperfect spatial data. Data mining (driven by knowledge discovery tools) is about processing available (observed, known, and understood) samples of data aiming to build a model (e.g., a classifier) to handle data samples that are not yet observed, known, or understood. These tools traditionally take semantically labeled samples of the available data (known facts) as an input for learning. We want to challenge the indispensability of this approach, and we suggest considering the things the other way around. What if the task would be as follows: how to build a model based on the semantics of our ignorance, i.e., by processing the shape of “voids” within the available data space? Can we improve traditional classification by also modeling the ignorance? In this paper, we provide some algorithms for the discovery and visualization of the ignorance zones in two-dimensional data spaces and design two ignorance-aware smart prototype selection techniques (incremental and adversarial) to improve the performance of the nearest neighbor classifiers. We present experiments with artificial and real datasets to test the concept of the usefulness of ignorance semantics discovery.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherMDPI AG
dc.relation.ispartofseriesIsprs International Journal of Geo-Information
dc.rightsCC BY 4.0
dc.subject.otherdata semantics
dc.subject.otherdata mining
dc.subject.otherclassification
dc.subject.otherignorance
dc.subject.otherdata voids
dc.subject.otherprototype selection
dc.subject.otheradversarial learning
dc.titleSemantics of Voids within Data : Ignorance-Aware Machine Learning
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202104162387
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn2220-9964
dc.relation.numberinseries4
dc.relation.volume10
dc.type.versionpublishedVersion
dc.rights.copyright© 2021 by the authors. Licensee MDPI, Basel, Switzerland
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysokoneoppiminen
dc.subject.ysotiedonlouhinta
dc.subject.ysopaikkatiedot
dc.subject.ysoluokitus (toiminta)
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
jyx.subject.urihttp://www.yso.fi/onto/yso/p5520
jyx.subject.urihttp://www.yso.fi/onto/yso/p2152
jyx.subject.urihttp://www.yso.fi/onto/yso/p12668
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.3390/ijgi10040246
jyx.fundinginformationThis research received no external funding.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0